Server IP : 172.67.145.202 / Your IP : 104.23.175.122 Web Server : Apache/2.2.15 (CentOS) System : Linux GA 2.6.32-431.1.2.0.1.el6.x86_64 #1 SMP Fri Dec 13 13:06:13 UTC 2013 x86_64 User : apache ( 48) PHP Version : 5.6.38 Disable Function : NONE MySQL : ON | cURL : ON | WGET : ON | Perl : ON | Python : ON | Sudo : ON | Pkexec : OFF Directory : /usr/share/gettext/intl/ |
Upload File : |
| Current File : /usr/share/gettext/intl/tsearch.c |
/* Copyright (C) 1995, 1996, 1997, 2000, 2006 Free Software Foundation, Inc.
Contributed by Bernd Schmidt <crux@Pool.Informatik.RWTH-Aachen.DE>, 1997.
NOTE: The canonical source of this file is maintained with the GNU C
Library. Bugs can be reported to bug-glibc@gnu.org.
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU Library General Public License as published
by the Free Software Foundation; either version 2, or (at your option)
any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
USA. */
/* Tree search for red/black trees.
The algorithm for adding nodes is taken from one of the many "Algorithms"
books by Robert Sedgewick, although the implementation differs.
The algorithm for deleting nodes can probably be found in a book named
"Introduction to Algorithms" by Cormen/Leiserson/Rivest. At least that's
the book that my professor took most algorithms from during the "Data
Structures" course...
Totally public domain. */
/* Red/black trees are binary trees in which the edges are colored either red
or black. They have the following properties:
1. The number of black edges on every path from the root to a leaf is
constant.
2. No two red edges are adjacent.
Therefore there is an upper bound on the length of every path, it's
O(log n) where n is the number of nodes in the tree. No path can be longer
than 1+2*P where P is the length of the shortest path in the tree.
Useful for the implementation:
3. If one of the children of a node is NULL, then the other one is red
(if it exists).
In the implementation, not the edges are colored, but the nodes. The color
interpreted as the color of the edge leading to this node. The color is
meaningless for the root node, but we color the root node black for
convenience. All added nodes are red initially.
Adding to a red/black tree is rather easy. The right place is searched
with a usual binary tree search. Additionally, whenever a node N is
reached that has two red successors, the successors are colored black and
the node itself colored red. This moves red edges up the tree where they
pose less of a problem once we get to really insert the new node. Changing
N's color to red may violate rule 2, however, so rotations may become
necessary to restore the invariants. Adding a new red leaf may violate
the same rule, so afterwards an additional check is run and the tree
possibly rotated.
Deleting is hairy. There are mainly two nodes involved: the node to be
deleted (n1), and another node that is to be unchained from the tree (n2).
If n1 has a successor (the node with a smallest key that is larger than
n1), then the successor becomes n2 and its contents are copied into n1,
otherwise n1 becomes n2.
Unchaining a node may violate rule 1: if n2 is black, one subtree is
missing one black edge afterwards. The algorithm must try to move this
error upwards towards the root, so that the subtree that does not have
enough black edges becomes the whole tree. Once that happens, the error
has disappeared. It may not be necessary to go all the way up, since it
is possible that rotations and recoloring can fix the error before that.
Although the deletion algorithm must walk upwards through the tree, we
do not store parent pointers in the nodes. Instead, delete allocates a
small array of parent pointers and fills it while descending the tree.
Since we know that the length of a path is O(log n), where n is the number
of nodes, this is likely to use less memory. */
/* Tree rotations look like this:
A C
/ \ / \
B C A G
/ \ / \ --> / \
D E F G B F
/ \
D E
In this case, A has been rotated left. This preserves the ordering of the
binary tree. */
#include <config.h>
/* Specification. */
#ifdef IN_LIBINTL
# include "tsearch.h"
#else
# include <search.h>
#endif
#include <stdlib.h>
typedef int (*__compar_fn_t) (const void *, const void *);
typedef void (*__action_fn_t) (const void *, VISIT, int);
#ifndef weak_alias
# define __tsearch tsearch
# define __tfind tfind
# define __tdelete tdelete
# define __twalk twalk
#endif
#ifndef internal_function
/* Inside GNU libc we mark some function in a special way. In other
environments simply ignore the marking. */
# define internal_function
#endif
typedef struct node_t
{
/* Callers expect this to be the first element in the structure - do not
move! */
const void *key;
struct node_t *left;
struct node_t *right;
unsigned int red:1;
} *node;
typedef const struct node_t *const_node;
#undef DEBUGGING
#ifdef DEBUGGING
/* Routines to check tree invariants. */
#include <assert.h>
#define CHECK_TREE(a) check_tree(a)
static void
check_tree_recurse (node p, int d_sofar, int d_total)
{
if (p == NULL)
{
assert (d_sofar == d_total);
return;
}
check_tree_recurse (p->left, d_sofar + (p->left && !p->left->red), d_total);
check_tree_recurse (p->right, d_sofar + (p->right && !p->right->red), d_total);
if (p->left)
assert (!(p->left->red && p->red));
if (p->right)
assert (!(p->right->red && p->red));
}
static void
check_tree (node root)
{
int cnt = 0;
node p;
if (root == NULL)
return;
root->red = 0;
for(p = root->left; p; p = p->left)
cnt += !p->red;
check_tree_recurse (root, 0, cnt);
}
#else
#define CHECK_TREE(a)
#endif
/* Possibly "split" a node with two red successors, and/or fix up two red
edges in a row. ROOTP is a pointer to the lowest node we visited, PARENTP
and GPARENTP pointers to its parent/grandparent. P_R and GP_R contain the
comparison values that determined which way was taken in the tree to reach
ROOTP. MODE is 1 if we need not do the split, but must check for two red
edges between GPARENTP and ROOTP. */
static void
maybe_split_for_insert (node *rootp, node *parentp, node *gparentp,
int p_r, int gp_r, int mode)
{
node root = *rootp;
node *rp, *lp;
rp = &(*rootp)->right;
lp = &(*rootp)->left;
/* See if we have to split this node (both successors red). */
if (mode == 1
|| ((*rp) != NULL && (*lp) != NULL && (*rp)->red && (*lp)->red))
{
/* This node becomes red, its successors black. */
root->red = 1;
if (*rp)
(*rp)->red = 0;
if (*lp)
(*lp)->red = 0;
/* If the parent of this node is also red, we have to do
rotations. */
if (parentp != NULL && (*parentp)->red)
{
node gp = *gparentp;
node p = *parentp;
/* There are two main cases:
1. The edge types (left or right) of the two red edges differ.
2. Both red edges are of the same type.
There exist two symmetries of each case, so there is a total of
4 cases. */
if ((p_r > 0) != (gp_r > 0))
{
/* Put the child at the top of the tree, with its parent
and grandparent as successors. */
p->red = 1;
gp->red = 1;
root->red = 0;
if (p_r < 0)
{
/* Child is left of parent. */
p->left = *rp;
*rp = p;
gp->right = *lp;
*lp = gp;
}
else
{
/* Child is right of parent. */
p->right = *lp;
*lp = p;
gp->left = *rp;
*rp = gp;
}
*gparentp = root;
}
else
{
*gparentp = *parentp;
/* Parent becomes the top of the tree, grandparent and
child are its successors. */
p->red = 0;
gp->red = 1;
if (p_r < 0)
{
/* Left edges. */
gp->left = p->right;
p->right = gp;
}
else
{
/* Right edges. */
gp->right = p->left;
p->left = gp;
}
}
}
}
}
/* Find or insert datum into search tree.
KEY is the key to be located, ROOTP is the address of tree root,
COMPAR the ordering function. */
void *
__tsearch (const void *key, void **vrootp, __compar_fn_t compar)
{
node q;
node *parentp = NULL, *gparentp = NULL;
node *rootp = (node *) vrootp;
node *nextp;
int r = 0, p_r = 0, gp_r = 0; /* No they might not, Mr Compiler. */
if (rootp == NULL)
return NULL;
/* This saves some additional tests below. */
if (*rootp != NULL)
(*rootp)->red = 0;
CHECK_TREE (*rootp);
nextp = rootp;
while (*nextp != NULL)
{
node root = *rootp;
r = (*compar) (key, root->key);
if (r == 0)
return root;
maybe_split_for_insert (rootp, parentp, gparentp, p_r, gp_r, 0);
/* If that did any rotations, parentp and gparentp are now garbage.
That doesn't matter, because the values they contain are never
used again in that case. */
nextp = r < 0 ? &root->left : &root->right;
if (*nextp == NULL)
break;
gparentp = parentp;
parentp = rootp;
rootp = nextp;
gp_r = p_r;
p_r = r;
}
q = (struct node_t *) malloc (sizeof (struct node_t));
if (q != NULL)
{
*nextp = q; /* link new node to old */
q->key = key; /* initialize new node */
q->red = 1;
q->left = q->right = NULL;
if (nextp != rootp)
/* There may be two red edges in a row now, which we must avoid by
rotating the tree. */
maybe_split_for_insert (nextp, rootp, parentp, r, p_r, 1);
}
return q;
}
#ifdef weak_alias
weak_alias (__tsearch, tsearch)
#endif
/* Find datum in search tree.
KEY is the key to be located, ROOTP is the address of tree root,
COMPAR the ordering function. */
void *
__tfind (key, vrootp, compar)
const void *key;
void *const *vrootp;
__compar_fn_t compar;
{
node *rootp = (node *) vrootp;
if (rootp == NULL)
return NULL;
CHECK_TREE (*rootp);
while (*rootp != NULL)
{
node root = *rootp;
int r;
r = (*compar) (key, root->key);
if (r == 0)
return root;
rootp = r < 0 ? &root->left : &root->right;
}
return NULL;
}
#ifdef weak_alias
weak_alias (__tfind, tfind)
#endif
/* Delete node with given key.
KEY is the key to be deleted, ROOTP is the address of the root of tree,
COMPAR the comparison function. */
void *
__tdelete (const void *key, void **vrootp, __compar_fn_t compar)
{
node p, q, r, retval;
int cmp;
node *rootp = (node *) vrootp;
node root, unchained;
/* Stack of nodes so we remember the parents without recursion. It's
_very_ unlikely that there are paths longer than 40 nodes. The tree
would need to have around 250.000 nodes. */
int stacksize = 100;
int sp = 0;
node *nodestack[100];
if (rootp == NULL)
return NULL;
p = *rootp;
if (p == NULL)
return NULL;
CHECK_TREE (p);
while ((cmp = (*compar) (key, (*rootp)->key)) != 0)
{
if (sp == stacksize)
abort ();
nodestack[sp++] = rootp;
p = *rootp;
rootp = ((cmp < 0)
? &(*rootp)->left
: &(*rootp)->right);
if (*rootp == NULL)
return NULL;
}
/* This is bogus if the node to be deleted is the root... this routine
really should return an integer with 0 for success, -1 for failure
and errno = ESRCH or something. */
retval = p;
/* We don't unchain the node we want to delete. Instead, we overwrite
it with its successor and unchain the successor. If there is no
successor, we really unchain the node to be deleted. */
root = *rootp;
r = root->right;
q = root->left;
if (q == NULL || r == NULL)
unchained = root;
else
{
node *parent = rootp, *up = &root->right;
for (;;)
{
if (sp == stacksize)
abort ();
nodestack[sp++] = parent;
parent = up;
if ((*up)->left == NULL)
break;
up = &(*up)->left;
}
unchained = *up;
}
/* We know that either the left or right successor of UNCHAINED is NULL.
R becomes the other one, it is chained into the parent of UNCHAINED. */
r = unchained->left;
if (r == NULL)
r = unchained->right;
if (sp == 0)
*rootp = r;
else
{
q = *nodestack[sp-1];
if (unchained == q->right)
q->right = r;
else
q->left = r;
}
if (unchained != root)
root->key = unchained->key;
if (!unchained->red)
{
/* Now we lost a black edge, which means that the number of black
edges on every path is no longer constant. We must balance the
tree. */
/* NODESTACK now contains all parents of R. R is likely to be NULL
in the first iteration. */
/* NULL nodes are considered black throughout - this is necessary for
correctness. */
while (sp > 0 && (r == NULL || !r->red))
{
node *pp = nodestack[sp - 1];
p = *pp;
/* Two symmetric cases. */
if (r == p->left)
{
/* Q is R's brother, P is R's parent. The subtree with root
R has one black edge less than the subtree with root Q. */
q = p->right;
if (q->red)
{
/* If Q is red, we know that P is black. We rotate P left
so that Q becomes the top node in the tree, with P below
it. P is colored red, Q is colored black.
This action does not change the black edge count for any
leaf in the tree, but we will be able to recognize one
of the following situations, which all require that Q
is black. */
q->red = 0;
p->red = 1;
/* Left rotate p. */
p->right = q->left;
q->left = p;
*pp = q;
/* Make sure pp is right if the case below tries to use
it. */
nodestack[sp++] = pp = &q->left;
q = p->right;
}
/* We know that Q can't be NULL here. We also know that Q is
black. */
if ((q->left == NULL || !q->left->red)
&& (q->right == NULL || !q->right->red))
{
/* Q has two black successors. We can simply color Q red.
The whole subtree with root P is now missing one black
edge. Note that this action can temporarily make the
tree invalid (if P is red). But we will exit the loop
in that case and set P black, which both makes the tree
valid and also makes the black edge count come out
right. If P is black, we are at least one step closer
to the root and we'll try again the next iteration. */
q->red = 1;
r = p;
}
else
{
/* Q is black, one of Q's successors is red. We can
repair the tree with one operation and will exit the
loop afterwards. */
if (q->right == NULL || !q->right->red)
{
/* The left one is red. We perform the same action as
in maybe_split_for_insert where two red edges are
adjacent but point in different directions:
Q's left successor (let's call it Q2) becomes the
top of the subtree we are looking at, its parent (Q)
and grandparent (P) become its successors. The former
successors of Q2 are placed below P and Q.
P becomes black, and Q2 gets the color that P had.
This changes the black edge count only for node R and
its successors. */
node q2 = q->left;
q2->red = p->red;
p->right = q2->left;
q->left = q2->right;
q2->right = q;
q2->left = p;
*pp = q2;
p->red = 0;
}
else
{
/* It's the right one. Rotate P left. P becomes black,
and Q gets the color that P had. Q's right successor
also becomes black. This changes the black edge
count only for node R and its successors. */
q->red = p->red;
p->red = 0;
q->right->red = 0;
/* left rotate p */
p->right = q->left;
q->left = p;
*pp = q;
}
/* We're done. */
sp = 1;
r = NULL;
}
}
else
{
/* Comments: see above. */
q = p->left;
if (q->red)
{
q->red = 0;
p->red = 1;
p->left = q->right;
q->right = p;
*pp = q;
nodestack[sp++] = pp = &q->right;
q = p->left;
}
if ((q->right == NULL || !q->right->red)
&& (q->left == NULL || !q->left->red))
{
q->red = 1;
r = p;
}
else
{
if (q->left == NULL || !q->left->red)
{
node q2 = q->right;
q2->red = p->red;
p->left = q2->right;
q->right = q2->left;
q2->left = q;
q2->right = p;
*pp = q2;
p->red = 0;
}
else
{
q->red = p->red;
p->red = 0;
q->left->red = 0;
p->left = q->right;
q->right = p;
*pp = q;
}
sp = 1;
r = NULL;
}
}
--sp;
}
if (r != NULL)
r->red = 0;
}
free (unchained);
return retval;
}
#ifdef weak_alias
weak_alias (__tdelete, tdelete)
#endif
/* Walk the nodes of a tree.
ROOT is the root of the tree to be walked, ACTION the function to be
called at each node. LEVEL is the level of ROOT in the whole tree. */
static void
internal_function
trecurse (const void *vroot, __action_fn_t action, int level)
{
const_node root = (const_node) vroot;
if (root->left == NULL && root->right == NULL)
(*action) (root, leaf, level);
else
{
(*action) (root, preorder, level);
if (root->left != NULL)
trecurse (root->left, action, level + 1);
(*action) (root, postorder, level);
if (root->right != NULL)
trecurse (root->right, action, level + 1);
(*action) (root, endorder, level);
}
}
/* Walk the nodes of a tree.
ROOT is the root of the tree to be walked, ACTION the function to be
called at each node. */
void
__twalk (const void *vroot, __action_fn_t action)
{
const_node root = (const_node) vroot;
CHECK_TREE (root);
if (root != NULL && action != NULL)
trecurse (root, action, 0);
}
#ifdef weak_alias
weak_alias (__twalk, twalk)
#endif
#ifdef _LIBC
/* The standardized functions miss an important functionality: the
tree cannot be removed easily. We provide a function to do this. */
static void
internal_function
tdestroy_recurse (node root, __free_fn_t freefct)
{
if (root->left != NULL)
tdestroy_recurse (root->left, freefct);
if (root->right != NULL)
tdestroy_recurse (root->right, freefct);
(*freefct) ((void *) root->key);
/* Free the node itself. */
free (root);
}
void
__tdestroy (void *vroot, __free_fn_t freefct)
{
node root = (node) vroot;
CHECK_TREE (root);
if (root != NULL)
tdestroy_recurse (root, freefct);
}
weak_alias (__tdestroy, tdestroy)
#endif /* _LIBC */
| N4m3 |
5!z3 |
L45t M0d!f!3d |
0wn3r / Gr0up |
P3Rm!55!0n5 |
0pt!0n5 |
| .. |
-- |
December 16 2014 08:46:29 |
0 / 0 |
0755 |
|
| | | | | |
| COPYING.LIB-2.0 |
24.698 KB |
May 20 2005 21:05:58 |
0 / 0 |
0644 |
|
| COPYING.LIB-2.1 |
25.923 KB |
May 20 2005 21:05:58 |
0 / 0 |
0644 |
|
| ChangeLog |
0.069 KB |
June 02 2014 07:58:56 |
0 / 0 |
0644 |
|
| Makefile.in |
20.261 KB |
November 04 2007 21:21:12 |
0 / 0 |
0644 |
|
| VERSION |
0.037 KB |
June 02 2014 07:58:56 |
0 / 0 |
0644 |
|
| bindtextdom.c |
8.744 KB |
November 06 2006 12:49:33 |
0 / 0 |
0644 |
|
| config.charset |
19.521 KB |
June 19 2006 10:41:10 |
0 / 0 |
0755 |
|
| dcgettext.c |
1.767 KB |
May 20 2005 21:05:58 |
0 / 0 |
0644 |
|
| dcigettext.c |
45.724 KB |
October 21 2007 18:41:41 |
0 / 0 |
0644 |
|
| dcngettext.c |
1.809 KB |
May 20 2005 21:05:58 |
0 / 0 |
0644 |
|
| dgettext.c |
1.743 KB |
May 20 2005 21:05:58 |
0 / 0 |
0644 |
|
| dngettext.c |
1.85 KB |
May 20 2005 21:05:58 |
0 / 0 |
0644 |
|
| eval-plural.h |
2.721 KB |
October 13 2007 15:52:44 |
0 / 0 |
0644 |
|
| explodename.c |
3.35 KB |
October 13 2007 15:44:55 |
0 / 0 |
0644 |
|
| export.h |
0.153 KB |
July 27 2005 11:23:13 |
0 / 0 |
0644 |
|
| finddomain.c |
5.933 KB |
October 13 2007 15:55:41 |
0 / 0 |
0644 |
|
| gettext.c |
1.855 KB |
May 20 2005 21:05:58 |
0 / 0 |
0644 |
|
| gettextP.h |
9.137 KB |
October 13 2007 16:18:11 |
0 / 0 |
0644 |
|
| gmo.h |
4.822 KB |
October 31 2006 12:41:52 |
0 / 0 |
0644 |
|
| hash-string.c |
1.603 KB |
May 23 2005 10:42:08 |
0 / 0 |
0644 |
|
| hash-string.h |
1.365 KB |
May 20 2005 21:05:58 |
0 / 0 |
0644 |
|
| intl-compat.c |
3.395 KB |
August 01 2005 11:02:42 |
0 / 0 |
0644 |
|
| intl-exports.c |
1.464 KB |
May 11 2006 20:46:17 |
0 / 0 |
0644 |
|
| l10nflist.c |
10.869 KB |
June 23 2006 16:29:25 |
0 / 0 |
0644 |
|
| langprefs.c |
3.747 KB |
June 07 2007 19:46:40 |
0 / 0 |
0644 |
|
| libgnuintl.h.in |
14.104 KB |
November 02 2007 00:23:43 |
0 / 0 |
0644 |
|
| libintl.rc |
1.651 KB |
May 27 2007 21:46:52 |
0 / 0 |
0644 |
|
| loadinfo.h |
5.073 KB |
May 17 2006 10:36:36 |
0 / 0 |
0644 |
|
| loadmsgcat.c |
33.438 KB |
October 13 2007 16:26:32 |
0 / 0 |
0644 |
|
| localcharset.c |
12.199 KB |
October 18 2006 11:56:41 |
0 / 0 |
0644 |
|
| localcharset.h |
1.362 KB |
May 20 2005 21:05:58 |
0 / 0 |
0644 |
|
| locale.alias |
2.568 KB |
November 02 2007 00:18:23 |
0 / 0 |
0644 |
|
| localealias.c |
10.35 KB |
October 31 2006 12:41:52 |
0 / 0 |
0644 |
|
| localename.c |
42.368 KB |
June 07 2007 19:49:32 |
0 / 0 |
0644 |
|
| lock.c |
22.086 KB |
October 09 2006 12:00:44 |
0 / 0 |
0644 |
|
| lock.h |
43.732 KB |
November 05 2007 00:56:16 |
0 / 0 |
0644 |
|
| log.c |
3.149 KB |
July 18 2005 11:28:22 |
0 / 0 |
0644 |
|
| ngettext.c |
1.934 KB |
May 20 2005 21:05:58 |
0 / 0 |
0644 |
|
| os2compat.c |
2.819 KB |
May 20 2005 21:05:58 |
0 / 0 |
0644 |
|
| os2compat.h |
1.521 KB |
May 20 2005 21:05:58 |
0 / 0 |
0644 |
|
| osdep.c |
0.97 KB |
May 11 2006 20:50:48 |
0 / 0 |
0644 |
|
| plural-exp.c |
3.963 KB |
October 13 2007 15:51:52 |
0 / 0 |
0644 |
|
| plural-exp.h |
4.087 KB |
October 13 2007 15:51:21 |
0 / 0 |
0644 |
|
| plural.c |
49.078 KB |
January 27 2007 03:57:32 |
0 / 0 |
0644 |
|
| plural.y |
7.373 KB |
October 31 2006 12:41:52 |
0 / 0 |
0644 |
|
| printf-args.c |
5.737 KB |
November 04 2007 21:28:37 |
0 / 0 |
0644 |
|
| printf-args.h |
3.392 KB |
November 04 2007 21:26:51 |
0 / 0 |
0644 |
|
| printf-parse.c |
13.547 KB |
November 03 2007 11:43:28 |
0 / 0 |
0644 |
|
| printf-parse.h |
2.136 KB |
May 20 2005 21:05:59 |
0 / 0 |
0644 |
|
| printf.c |
9.12 KB |
June 10 2007 00:38:45 |
0 / 0 |
0644 |
|
| ref-add.sin |
1.067 KB |
May 20 2005 21:05:59 |
0 / 0 |
0644 |
|
| ref-del.sin |
1.023 KB |
May 20 2005 21:05:59 |
0 / 0 |
0644 |
|
| relocatable.c |
13.84 KB |
October 09 2006 12:00:44 |
0 / 0 |
0644 |
|
| relocatable.h |
2.775 KB |
July 27 2005 11:27:54 |
0 / 0 |
0644 |
|
| textdomain.c |
3.803 KB |
November 06 2006 12:49:33 |
0 / 0 |
0644 |
|
| tsearch.c |
18.391 KB |
May 20 2007 21:43:02 |
0 / 0 |
0644 |
|
| tsearch.h |
2.74 KB |
January 27 2007 03:17:47 |
0 / 0 |
0644 |
|
| vasnprintf.c |
116.44 KB |
November 05 2007 23:46:59 |
0 / 0 |
0644 |
|
| vasnprintf.h |
2.784 KB |
May 20 2007 21:43:02 |
0 / 0 |
0644 |
|
| vasnwprintf.h |
1.693 KB |
May 20 2005 21:05:59 |
0 / 0 |
0644 |
|
| version.c |
0.962 KB |
August 01 2005 11:14:00 |
0 / 0 |
0644 |
|
| wprintf-parse.h |
2.175 KB |
May 20 2005 21:05:59 |
0 / 0 |
0644 |
|
| xsize.h |
3.459 KB |
May 20 2005 21:05:59 |
0 / 0 |
0644 |
|
$.' ",#(7),01444'9=82<.342ÿÛ C
2!!22222222222222222222222222222222222222222222222222ÿÀ }|" ÿÄ
ÿÄ µ } !1AQa "q2‘¡#B±ÁRÑð$3br‚
%&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyzƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚáâãäåæçèéêñòóôõö÷øùúÿÄ
ÿÄ µ w !1AQ aq"2B‘¡±Á #3RðbrÑ
$4á%ñ&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz‚ƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚâãäåæçèéêòóôõö÷øùúÿÚ ? ÷HR÷j¹ûA <̃.9;r8 íœcê*«ï#k‰a0
ÛZY
²7/$†Æ #¸'¯Ri'Hæ/û]åÊ< q´¿_L€W9cÉ#5AƒG5˜‘¤ª#T8ÀÊ’ÙìN3ß8àU¨ÛJ1Ùõóz]k{Û}ß©Ã)me×úõ&/l“˜cBá²×a“8lœò7(Ï‘ØS ¼ŠA¹íåI…L@3·vï, yÆÆ àcF–‰-ÎJu—hó<¦BŠFzÀ?tãúguR‹u#
‡{~?Ú•£=n¾qo~öôüô¸¾³$õüÑ»jò]Mä¦
>ÎÈ[¢à–?) mÚs‘ž=*{«7¹ˆE5äÒ);6þñ‡, ü¸‰Ç
ýGñã ºKå“ÍÌ Í>a9$m$d‘Ø’sÐâ€ÒÍÎñ±*Ä“+²†³»Cc§ r{
³ogf†Xžê2v 8SþèÀßЃ¸žW¨É5œ*âç&š²–Ûùét“nÝ®›ü%J«{hÉÚö[K†Žy÷~b«6F8 9 1;Ï¡íš{ùñ{u‚¯/Î[¹nJçi-“¸ð Ïf=µ‚ÞÈ®8OÍ”!c H%N@<ŽqÈlu"š…xHm®ä<*ó7•…Á
Á#‡|‘Ó¦õq“êífÛüŸ•oNÚ{ËFý;– ŠÙ–!½Òq–‹væRqŒ®?„ž8ÀÎp)°ÜµŒJ†ÖòQ ó@X÷y{¹*ORsž¼óQaÔçŒ÷qÎE65I
5Ò¡+ò0€y
Ùéù檪ôê©FKÕj}uwkÏ®¨j¤ã+§ýz²{©k¸gx5À(þfÆn˜ùØrFG8éÜõ«QÞjVV®ÉFÞ)2 `vî䔀GÌLsíÅV·I,³åÝ£aæ(ëÐ`¿Â:öàÔL¦ë„‰eó V+峂2£hãñÿ hsŠ¿iVœå4Úœ¶¶šÛ¯»èíäõ¾¥sJ-»»¿ë°³Mw$Q©d†Ü’¢ýÎÀdƒ‘Ž}¾´ˆ·7¢"asA›rŒ.v@ ÞÇj”Y´%Š–·–5\ܲõåË2Hã×°*¾d_(˜»#'<ŒîØ1œuþ!ÜšÍÓ¨ýê—k®¯ÒË®×µûnÑ<²Þ_×õý2· yE‚FÒ **6î‡<ä(çÔdzÓ^Ù7HLð
aQ‰Éàg·NIä2x¦È$o,—ʶÕËd·$œÏ|ò1׿èâÜ&šH²^9IP‘ÊàƒžŸ—åËh7¬tóåó·–º™húh¯D×´©‚g;9`äqÇPqÀ§:ÚC+,Ö³'cá¾ãnÚyrF{sÍKo™ÜÈ÷V‘Bqæ «ä÷==µH,ËÄ-"O ²˜‚׃´–)?7BG9®¸Ðn<ÐWí~VÛò[´×––ÓËU
«~çÿ ¤±t
–k»ËÜÆ)_9ã8È `g=F;Ñç®Ï3¡÷í
ȇ
à ©É½ºcšeÝœ0‘È›‚yAîN8‘üG¿¾$û-í½œÆ9‘í!ˆ9F9çxëøž*o_žIÆÖZò¥ÓºVùöõ¿w¦Ýˆæ•´ÓYÄ®³ËV£êƒæõç?áNòîn.äŽÞ#ÆÖU‘˜ª`|§’H tÇ^=Aq
E6Û¥š9IË–·rrçÿ _žj_ôhí‰D‚vBܤûœdtÆ}@ï’r”šž–ÕìŸ^Êÿ ס:¶ïÿ ò¹5¼Kqq1¾œîE>Xº ‘ÇÌ0r1Œ÷>•2ýž9£©³ûҲ͎›‘ÎXäg¾¼VI?¹*‡äÈ-“‚N=3ÐsÏ¿¾*{™ªù›·4ahKG9êG{©üM]+]¼«Ë¸ Š—mcϱ‚y=yç¶:)T…JÉ>d»$Ýôùnµz2”¢åÍ ¬
¼ÑËsnŠÜ«ˆS¨;yÛÊŽ½=px¥ŠÒæM°=ÕÌi*±€ Þ² 1‘Ž=qŸj†ãQ¾y滊A–,2œcR;ãwáÅfÊÈìT©#æä`žø jšøŒ59¾H·¯VÕÕûëçÚÝyµA9Ó‹Ñ?Çúþºš—QÇ
ÔvòßNqù«¼!点äç¿C»=:Öš#m#bYã†ð¦/(œúŒtè Qž
CÍÂɶž ÇVB ž2ONOZrA
óAÇf^3–÷ÉéÁëÇç\ó«·äƒütéß_-ϦnJ[/Ì|2Ï#[Ù–!’,Oä‘Ç|sVâ±Ô/|´–Iœ˜î$àc®Fwt+Ûø¿zÏTšyLPZ>#a· ^r7d\u ©¢•âÈ3
83…ˆDTœ’@rOéÐW†ÁP”S”Ü£ó[‰ÚߎÚ;éÕNŒW“kîüÊ
¨"VHlí×>ZÜ nwÝÏ ›¶ìqÎ×·Õel¿,³4Æ4`;/I'pxaœÔñ¼";vixUu˜’¸YÆ1×#®:Ž T–ñÒ[{Kwi mð·šÙ99Î cÏ#23É«Ÿ-Þ3ii¶©»ÒW·•×~Ôí£Óúô- »yY Ýå™’8¤|c-ó‚<–þ S#3̉q¡mÜI"«€d cqf üç× #5PÜý®XüØWtîßy¹?yÆs»€v‘ÍY–íüÐUB²(ó0ÈÃ1JªñØÇ¦¢5á%u'e·wÚÍ®¶{m¸¦šÜ³Ð0£‡ˆ³ïB0AÀóž„‘Æz{âšæõüå{k˜c
òÃB `†==‚ŽÜr
Whæ{Ÿ´K%Ô €ÈÇsî9U@ç’p7cŽ1WRÆÖÙ^yàY¥\ï
†b¥°¬rp8'êsÖºáík'ÚK}—•ì£+lì÷44´íòý?«Ö÷0¤I"Ú³.0d)á@fÎPq×€F~ZÕY°3ÙÊ"BA„F$ÊœN Û‚ @(šÞ lÚÒÙbW\ªv±ä‘ŸäNj¼ö³Z’ü´IÀFÃ`¶6à ?!
NxÇÒ©Ò†Oª²½’·ŸM¶{êºjÚqŒ©®èþ
‰ ’&yL%?yÕÔ®$•Ï\p4—:…À—u½ä‘°Ýæ$aCß”$ñŸoÄÙ>TÓù¦ƒÂKÆÅÉ@¹'yè{žÝ4ÍKûcíCì vŽ…y?]Ol©Ê|Íê¾Þ_;üÿ Ï¡Rçånÿ rÔ’[m²»˜¡Ž4ùDŽ›Ë) $’XxËëšY8¹i•†Á!‘þpJ•V^0
Œ±õèi²Å²en%·„†8eeù²Yˆ,S†=?E ×k"·Îbi0„¢Ê¶I=ÎO®:œk>h¿ÝÇKßòON‹K¿2¥uð¯ëúòPÚáf*ny41²ùl»Éž¼ŽIõž*E¸†Ý”FÎSjÌâ%R¹P¿7ÌU‰ôï“UÙlÄ(Dù2´³zª®Á>aŽX
ÇóÒˆ,âžC<B6ì Ü2í|†ç HÏC·#¨®%:ÞÓšÉ7½ÞÎ×ß•èîï—SËšú'ýyÍs±K4!Ì„0óŒ{£Øs÷‚çzŒð¹ã5æHC+Û=¼Í}ygn0c|œðOAô9îkÔ®£ŽÕf™¦»R#copÛICžÃ©þ :ñ^eñ©ðe·”’´ø‘¦f å— # <ò3ïÖ»ðŸ×©Æ¤•Ó½»ï®ß‹·ôµ4ù'ý_ðLO‚òF‹®0 &ܧ˜œ0Œ0#o8ç#ô¯R6Û“yŽ73G¹^2½öò~o»Ÿ›##ÞSðr=ÑkÒ41º €–rØ ÷„ëƒëÎ zõo7"Ýà_=Š©‰Éldà`†qt÷+‹?æxù©%m,ö{.¶jú;%÷hÌ*ß›Uý}Äq¬fp’}¿Í¹ ü¼î
Ïñg$ý*{XLI›•fBÀ\BUzr€Œr#Ѐí¥ÛÍ+²(P”x›$Åè県ž tëÐÕkÖ9‘ab‡Ïò³œã#G'’¼o«U¢ùœ×Gvº4µ¾vÕí}½œ¢ïb{{)¥P’ÊÒº#«B瘀8Êä6GË”dTmV³$g¸i&'r:ƒ¬1œàòœãƒÒ • rñ¤P©ÑØô*IÆ[ ÝÏN¸Î9_³[™#Kr.Fí¤í*IÁ?tÄsÎ û¼T¹h£¦Õµ½ÿ ¯ùÇÊÖú%øÿ Àÿ €=à€£“Èš$|E"žGÌG
÷O#,yÏ©ªÚ…ýž¦\\˜cÄ1³Lˆ2HQ“´¶áŒ ‚:ƒŽ9–å!Š–Í‚É¾F''‘÷yÇNüûãëpÆ|=~¢D•䵕vn2„sÓžGLë
IUP´Uíw®Ú-/mm£²×Ì–ìíeý]? øÑüa¨ÞZÏeki,q‰c10PTpAÜÀg%zSß°2Ĥ¡U]®ØŠÜçžI;€èpx?_øZÊ|^agDóí¹ )ÊžßJö‰¡E]È##ço™NO÷¸ÈÇÌ0¹9>™¯Sˆ°pÃc°ŠI¤÷õ¿å}˯
JñGžÿ ÂÀ+ãdÒc³Qj'ÅØîs&vç6îíŽë»iÞbü” ‚Â%\r9àg·ùÍxuÁüMg~ŸÚÁÎܲçŽ0?*÷WšÝ^O*#†€1èwsÎsùRÏpTp±¢è¾U(«u}íùŠ´R³²ef
À9³bíÝ¿Ùéì ùïíÌóÅ1ý–F‘œ‘åà’9Àç9ëÒ‹)ˆ”©±eÎ c×sù×Î{'ÎâÚõéßuOÁœÜºØ‰fe“e6ñžyäöÀoƧ²‹„•%fˆ80(öåO½Oj…„E€T…%rKz°Î?.;{šXÙ‡ŸeUÚd!üx9þtã%wO_øoòcM-
j–ÒHX_iK#*) ž@Ž{ôǽBd¹‰RÝn–ê0«7ˆìyÀ÷Í@¬Ì¢³³’ 9é÷½?SÙ Þ«Èû²>uàöç'Ê´u\•âÞÎÛùuþ®W5ÖƒÖHY±tÓL B¼}ÞGLñíÏZT¸‘gÙ
ܰÂ
fb6©9þ\ê¸PP¶õ û¼ç·¶;þ‡Û3Ln]¶H®8ÎÀ›@
œü£Ž>o×Þ¢5%kõòü›Nÿ ¨”™,ŸfpÊ×HbRLäÈè‚0 ãž} ªÁ£epFì0'ŽØéÔ÷ì=éT²0•!…Îzt9ç¾?”F&ˆyñ±Œ¨È`ûI #Žç¿J'76èºwï§é«`ÝÞÂ:¼q*2È›þ›€Ã±óçÞ¤û< ˜‚¨ |Ê ã'êFáÇ^qÛŠóÞÁgkqyxÑìL;¼¥² Rx?‡¯Y7PŽwnù¶†û¾Ü·.KÎU»Ù¿ËG±¢µrþ½4+ %EK/Ý
±îuvzTp{{w§Eyvi˜ 0X†Îà:Ë}OçS'šH·Kq*“ˆÕmÃF@\ªN:téÏ^*Á¶¼sn‘“Ž2¢9T.½„\ýò@>˜7NFïNRÓ·wèôßEÕua'¬[þ¾cö¡ÌOæ¦âÅŠ². Ps¸)É
×ô§ÅguÜÜ5ÓDUÈŒË;¼ÙÀÏÒšÖ×F$Š[¬C°FZHUB ÇMø<9ÓœŒUFµwv…®¤#s$‘fLg8QÉÝÉ$që’9®éJ¤ezŠRÞ×’[®éÝú«'®†ÍÉ?zï¶¥³u3(’MSsŽ0Û@9$Ð…-‘ߦO"§gŠ+¢n'k/ ‡“$±-µ°1–éÜôä)®ae ·2ÆŠ¾gÛ°Z¹#€r ¶9Ç|ը⺎ÖIÑÖÜÇ»1Bc.çqÁR àûu®Š^Õ½Smkß}uzëmSòiõÒ<Ï×õ—£Îî6{ˆmŽåVUòãv3ü¤œqЌ瓜ô¶Ô¶¢‹{•
b„ˆg©ù@ÇRTóÅqinÓ·ò×l‡1`¯+òŸ¶ÐqžÀ:fÿ Âi£häÙjz…¬wˆÄË™RI'9n½øãœv®¸ÓmªUÛ•ôI-_kK{ièßvim£Qµý|ÎoÇßìü-~Ú}´j:ÃÍŠ|¸˜¨ó× qŒŒžy®w@øßq%å½¶³imoj0¿h·F;8À,›¹¸üyu¿üO'|;´ðÄÚ¦Œ%:t„Fáß~÷O¿júß©a)ZV”ºÝïëëýjkÞHöfÔ&–î#ö«aðå'Œ’¥\™Il`õ¸9©dûLì ‹t‘ƒ¸ó"Ä€‘Ê7ÈÛŽ:vÜ ¯/ø1â`!»Ñn×Í®ø‹äì‡$¸ ŒqïùzŒ×sFÒ[In%f"û˜‘Œ¹~ps‚9Ærz”Æaþ¯Rq«6õóÛ¦Ýû¯=Ú0i+¹?ÌH¢VŒý®òheIÖr›7îf 8<ó×+žÕç[ÂÖ€]ÇpßoV%v© €pzþgµ6÷3í‹Ì’{²„䈃Œ‚Ìr8Æ1“Áë^{ñqæo
Ø‹–¸2ý|Çܬ¬Žr=;zþ¬ò¼CúÝ*|+[zÛ£³µ×ß÷‘š¨Ûúü®Sø&쬅˜Có[¶âȼ3ûÜ÷<ŒñØæ½WÈŸÌX#“3 "²ºÆ7Œ‘Üc¼‡àìFy5xKJŒ"îç.r@ï×Þ½Ä-ÿ þ“}ª}’*Þ!,Fm¸Î@†9b?1W{Yæ3„`Ú¼VõŠÚÛ_kùöG.mhÎñ ôíhí§Ô$.ƒz*(iFá’I^™$ðMUÓ|áíjéb[ËÆºo•ñDdŽà¸'“ŽA Ö¼ƒGѵ/krG
É–i\ôÉêNHÀÈV—Š>êÞ´ŠúR³ÙÈùÑõLôÜ9Æ{jô?°°Kýš¥WíZ¿V—m6·E}{X~Æ?
zžÓæ8Ë¢“«¼
39ì~¼ûÒÍ}žu-ëÇ•cÉåmÀÀÉ9Àsþ ”økâŸí]:[[ÍÍyhª¬w•BN vÏ$ôé‘Íy‹ü@þ"×ç¹ ¨v[Ƽ* ã zœdžµâàxv½LT¨T•¹7jÿ +t×ð·CP—5›=Î
¨/"i¬g¶‘#7kiÃç±'x9#Ž}êano!òKD‘ílï”('¿SÔð?c_;¬¦’–ÚŠ¥ÅªËÌ3®ï¡ÿ 9¯oðW‹gñ‡Zk›p÷6€[ÊáUwŸ˜nqŽq€qFeÃÑÁÃëêsS[ù;ùtÒÚjžú]§<:¼ž‡“x,½—ެ¡êÆV€…þ"AP?ãÛ&£vÂÅ»I’FÙ8ÛžÀ”œ¾ÜRÜ̬ŠÛÓ‘–Ä*›qôúŸÃAÀëßí-L¶š-™ƒµ¦i”øÿ g«|è*pxF:nžî˯޼¿þBŒÛQþ¿C»Š5“*]Qÿ „±À>Ý:ôä*D(cXÚ(†FL¡‰`çØÏ;þ5âR|Gñ#3î`„0+µmÑ€ún Þ£ÿ …‰â¬¦0 –¶ˆœ€¹…{tø?ʯ(_çþ_Š5XY[¡Ù|Q¿ú
µŠ2︛sO* Бÿ ×â°<+à›MkÂ÷š…ij
·Ü–ˆ«ò‚?ˆœúäc½øåunû]¹Iïåè› ç ¯[ð&©¥Ýxn;6>}²’'`IË0ÁèN}zö5éâ©âr\¢0¥ñs^Ml¿«%®ýM$¥F•–ç‘Øj÷Ze¦£k
2¥ô"FqÀ`„~5Ùü+Ò¤—QºÕ†GÙ—Ë‹ çqä°=¶ÏûÔÍcá¶¡/ˆ¤[ý†iK ™°"ó•Æp;`t¯MÑt}+@²¶Óí·Ídy’3mÕË‘’zc€0 íyÎq„ž ¬4×5[_]Rë{]ì¬UZ±p÷^åØÞÈ[©&OúÝÛ‚‚s÷zžIïßó btÎΪ\ya¾U;C¤t*IÎFF3Џ™c
1žYD…U° êÄàõë\oŒ¼a ‡c[[GŽãP‘7 â znÈ>Ãü3ñ˜,=lUENŒäô¾ÚÀÓ[_ð9 œ´JçMy©E¢Àí}x,bpAó¦üdcûŒW9?Å[Há$¿¹pÄ™#^9O88©zO=«Ë!µÖüY¨³ªÍy9ûÒ1 úôÚ»M?àô÷«ÞëÖ–ÙMÌ#C&ßnJ“Üp#Ђ~²†G–àíekϵío»_žŸuΨQ„t“ÔÛ²øáû›´W6»Øoy FQÎr $Óõìk¬„‹ïÞÚ¼sÆíòÉ67\míÎyF¯ð¯TÓã’K;ë[ð·ld«7üyíšÉ𯊵 êáeYžÏq[«&vMÀðßFà}p3ÅgW‡°8ØßVín›þšõ³¹/ ü,÷ií|’‘´R,®ŠÉ‡W“Ž1ØöëÓ¾xžÖÞ¹xÞݬXZGù\’vŒž˜ÆsØúÓïí&ÒÒ{]Qž9£Ê¡ù·ÄÀ»¶áHäž™5—ìö« -&ù¤U<±ÉÆA>½ý+æg
jžö륢þNÛ=÷JÖÛfdÔ õýËúû‹ÓØB²¬fInZ8wÌÉЮ~aƒÎ=3ìx‚+/¶äÁlŠ‚?™Æü#8-œ\pqTZXtè%»»&ÚÝ#´ŠðÜžã§Í’¼{p·ß{m>ÞycP¨’¼¢0ú(Rƒë^Ž ñó¼(»y%m´ÕÙ}ÊûékB1¨þÑ®,#Q)ó‡o1T©ÜÃ*Ž‹‚yö<b‰4×H€“ìÐ.
¤²9ÌŠ>„Žãøgšñ
¯Š~)¸ßå\ÛÛoBŒa·L²œg$‚Iã¯ZÈ—Æ~%”äë—È8â)Œcƒ‘Âàu9¯b%)ÞS²¿Ïïÿ 4Öºù}Z/[H%¤vÉ#Ì’x§†b
© ³´tÜ{gn=iï%õªÇç]ܧ—!åw„SÓp ·VÈÏ¡?5Âcâb¥_ĤŠz¬—nàþÖΟñKÄöJé=ÌWèêT‹¸÷qÎჟ•q’zWUN«N/ØO^Ÿe|í¾©k{üõ4öV^ïù~G¹êzÂèº|·÷×[’Þ31†rpjg·n
Æ0Ý}kåË‹‰nîe¹ËÍ+™ÏVbrOç]'‰¼o®xÎh`¹Ç*±ÙÚ!T$d/$žN>¼WqᯅZ9ÑÒO\ÜÛê1o&,-z ~^NCgNÕéá)ÒÊ©7‰¨¯'Õþ¯þ_¿Ehîþóâ €ï¬uÛûý*ÎK9ä.â-öv<²‘×h$àãúW%ö¯~«g-ÕõÀàG~>Zú¾Iš+(šM³ Û#9äl%ðc¬ ûÝ xÖKG´x®|¸¤Ï™O:Ê8Ã’qÉcÔä‚yÇNJyËŒTj¥&µOmztjÿ ?KëaµÔù¯áýóXøãLeb¾tžAÇû`¨êGBAõ¾•:g˜’ù·,þhÀ`¬qÜ` e·~+å[±ý“âYÄjWì—µHé±ø?Nõô>½âX<5 Ç©ÏѼM¶8cܪXŽÉ^r?¼IróÈS•ZmÇ›™5»òÚÚ7ïu«&|·÷•Ά
>[©ÞXHeS$Œyà€ ÷ù²:ò2|óãDf? Z¼PD¶ÓßC(xÆ0|©ßR;ôMsÿ µ´ÔVi¬,͹›Ìxâi˜`¹,GAéÇlV§ÄýF×Yø§ê–‘:Ã=ò2³9n±ÉžØÏ@yÎWžæ±Ãàe„ÄÒN ]ïòêìú_Go'¦ŽÑ’_×õЯðR66þ!›ÑÄ gFMÙ— äžäqôÈ;ÿ eX<#%»Aö‰ãR¤ Í”Ž¹È G&¹Ÿƒ&á?¶Zˆ±keRè Kãnz·ãŠÕøÄÒÂ9j%@®×q±ÜŒý[õ-É$uíè&¤¶9zÇï·Oøï®ÄJKšÖìdü"µˆ[jײÎc;ã…B(g<9nàȯG½µŸPÓ.´Éfâ¼FŽP
31 ‘ÏR}<3šä~
Ã2xVöî Dr
Ç\›}Ý#S÷ÈÀëŽHÆI®à\OçKuäI¹†ó(”—GWî ñ³¹¸æ2¨›‹ºÚû%¾ýÖ_3ºNú¯ëúì|ÕÅÖ‰}ylM’ZËîTÿ á[ðÐñ/ˆ9Àû
¸ón3 Mòd‘÷ döª^.Êñް›BâîNp>cëÏçÍzïÃôÏ
YÍ%ª¬·ãÏ-*9ÜÂãhéŒc¾dÈêú¼Ë,. VŠ÷çeÿ n/¡¼äãõâ=‹xGQKx”|¹bÌŠD@2Œ 8'Ž àúƒŽ+áDÒ&¡¨"Œ§–Žr22 Ç·s]ŸÄ‹«ð%ÚÄ<¹ä’(×{e›HÀqÁç©Ç½`üŽÚõK饚9ƒÄ±€<–úƒú~ çðñO#Í%iKKlµ¦¾F)'Iê¬Î+Ç(`ñ¾£œdÈ’`™ºcßéé^ÿ i¸”Û\ý¡æhÔB«aq¸}ãÀÆ:ÜWƒ|FÛÿ BŒÇÀeaŸ-sÊ€:úW½ÜÝÜ<%$µ†%CóDªÀí%IÈÏʤ…ôäñÞŒ÷‘a0“ôŽÚë¤nŸoW÷0«e¶y'Å»aΗ2r’# Û°A^ý9ÉQÔõ=ù5¬£Öü.(Þ’M$~V«=éSÄFN½®©ÔWô»ÿ þHžkR‹ìÏ+µµžöê;khÚI¤m¨‹Ôš–âÖçJ¾_Z•’6a”Èô> ÕÉaÕ<%®£2n bQŠå\tÈõUÿ ø»þ‹k15‚ÃuCL$ݹp P1=Oøýs¯^u éEJ”–éêŸê½5ýzy›jÛ³á›Ûkÿ ÚOcn±ÛÏîW;boºz{ãžüVÆ¡a£a5½äÎÂks¸J@?1è¿{$ä‘=k”øsÖ^nŒ¦)ÝåXÃíùN1ØõÚOJë–xF÷h¸ Œ"Ž?x䜚ü³ì¨c*Fœ¯i;7~ñí׫Ðó¥Ë»3Ãü púw ‰°<Á%»ñž ÿ P+Û^ ¾Ye£ŽCÄŒ„/>˜>•á¶Ìm~&&À>M[hÈÈÿ [Ž•íd…RO@3^Ç(ʽ*¶ÖQZyßþ
1Vº}Ñç?¼O4Rh6R€ª£í¡ûÙ
a‚3ß·Õ
ü=mRÍ/µ9¤‚0ÑC¼Iè:cŽsÛ¾™x£ÆÐ¬ªÍöˢ샒W$•€Å{¨ÀPG
ÀÀàŸZìÍ1RÉ0´ðxEË9+Éÿ ^rEÕ—±Š„70l¼áË@û.' ¼¹Žz€N3úUÉ<3á×*?²¬‚ä†"Ùc=p íÛ'¡ª1ñ"økJ†HÒ'»Ÿ+
oÏN¬Ã9 dÙãÜדÏâÍ~æc+j·Jzâ7(£ðW]•æ™?nê´º6åwéåç÷N•ZŠíž›¬|?Ðõ?Ñ-E…®³ÇV$~X¯/…õ x‘LˆÑÜÚÈ7¦pzãÜüë½ðÄ^õtÝYËÍ7ÉÖÕ8ÏUe# #€r=sU¾/é’E§jRC4mxNÝ´9†íuá»›V‘
ZI€×cr1Ÿpzsøf»¨åV‹ìû`qËLÊIã?\~¼³áËC©êhªOîO»‘ÃmçÛçút×¢x“Z}?Üê#b-¤X7õÄò gž zzbº3œm*qvs·M=íúéw}¿&Úª°^Ö×µÏ(ø‡â†Öµƒenñý†×åQáYûœ÷ÇLœôÎNk¡ð‡¼/µ¸n0æÉ0¬ƒ‚üîÉÆvŒw®Sáö”š¯‹-üÕVŠØÙ[$`(9cqƒÔ_@BëqûÙ`Ýæ0;79È?w<ó |ÙÜkßÌ1±Ëã¿ìÒ»ðlìï«ÓnªèèrP´NÏš&ŽéöÙ¸÷æ°~-_O'‰`°!RÚÚÝ%]Ø%þbß1'¿ÿ XÕáOöÎŒ·‹¬+Åæ*ÛÛ™0¤ƒOÍÔ`u¯¦ÂaèÐÃÓ«‹¨Ô¥µœ¿¯ÉyÅÙ.oÔôŸ Úx&(STðݽ¦õ] ’ÒNóÁäÈùr3í·žÚ[™ƒ¼veÈ÷ÞIõÎGlqÎ=M|«gsªxÅI6
]Z·Îªä,¨zŒŽÄ~#ØŠúFñiÉqc©éÐD>S딑 GñŽ1éÐ^+
Ëi;Ô„µVÕú»i¯ÈÒ-ZÍ]òܘ®ì`bÛÙ¥_/y(@÷qÐúg Ô÷W0.Ø›
6Ò© r>QƒŒ0+Èîzb¨É+I0TbNñ"$~)ÕÒ6Þ‹{0VÆ27œWWñcÄcX×íôûyKZéðªc'iQ¿¯LaWŠŸS\·Š“źʸ…ôÙÂí|öÀÇåV|!¤ÂGâÛ[[’ï
3OrÙËPY¹=Î1õ5öåTžÑè Ú64/üö?Zëžk}¬¶éàoá¾á}3“ü]8Éæ¿´n²Žš_6¾pœ)2?úWÓÚ¥¾¨iWúdŽq{*ª1rXŒd…m»‰äcô¯–dâ•ã‘Jº¬§¨#¨®§,df«8ÉÅßN¾hˆ;îÓ=7áùpën®É 6ûJžO2^œÐò JÖø¥²ã›Ò6Ü·‰!wbÍ‚¬O©»õ¬ÿ ƒP=Ä:â¤-&ÙŽ
`È9 r9íϧzë> XÅ7ƒ5X–krÑ¢L7€ìw}ÑŸNHëŒüþ:2†á¼+u·á÷N/Û'Ðç~ߘô«ëh!ónRéeQ´6QÛÿ èEwëÅÒ|¸Yqó1uêyùzð8 ƒŠù¦Ò;¹ä6öi<'ü³„[ÃZhu½ ùÍ¡g‚>r¯×ŠîÌx}bñ2“k꣧oø~›hTèóËWò4|ki"xßQ˜Ï6øÀLnß‚0 ¹Æ{±–¶Öe#¨27È@^Ìß.1N¾œyç€õ†ñeé·Õã†çQ°€=Ì©ºB€Ø8<‚ÃSõ®ùcc>×Ú .Fr:žÝGæ=kÁâ,^!Fž
¬,àµ}%¶«îõ¹†"r²ƒGœüYÕd?aÑÃY®49PyU ÷þ!žxÅm|/‚ãNð˜¼PcûTÒ,¹/Ý=FkÏ|u¨¶«âë…{¤m¢]Û¾ïP>®XãÞ½iÓÁ¾
‰'¬–6ß¼(„ï— í!úÙäzôë^–:œ¨å|,_¿&š×]uÓѵÛô4’j”bž§x‘Æ©ã›á,‚[Ô
ÎÞ= ŒËæ ÀùYÁ?ŽïÚ¼?ÁªxºÕÛ,°1¸‘¿ÝäãØ¯v…@¤åq½ºã œàûââ·z8Xýˆþz~—û»™âµj=Ž
â~ãáh@'h¼F#·Üp?ŸëQü-løvépx»cŸø…lxâÃûG·‰¶ø”L£©%y?¦úõÆü-Õ¶¥y`Òl7>q’2üA?•F}c‡jB:¸Jÿ +§¹¿¸Q÷°ív=VÑìu[Qml%R7a×IèTõéŽx¬
?†š7
1†îã-ˆã’L¡lŽ0OÓ=ÅuˆpÇ•¼3ÛùÒ¶W/!|’wŽw^qÔ×ÏaóM8Q¨ãÑ?ëï0IEhÄa¸X•`a
?!ÐñùQ!Rä žqŽžÝO`I0ÿ J“y|ñ!Îã@99>þ8–+éáu…!ù—ä
ʰ<÷6’I®z
ÅS„¾)Zþ_Öýµ×ËPåOwø÷þ*üïænÖùmØÝûþ¹=>¦½öî×Jh]¼ç&@§nTŒ6ITÀõ^Fxð7Å3!Ö·aÛ$þÿ ¹ã5îIo:ȪmËY[’8ÇӾlj*òû¢¥xõ¾¼ú•åk+\ð¯ HÚoŽl•Ûk,¯ ç²²cõÅ{²Z\
´ìQ åpzŽ3Ôð}ÿ Jð¯XO¡øÎé€hÙ¥ûLdŒ`““ù6Gá^ÃáÝ^Ë[Ñb¾YåŒÊ»dŽ4†2§,;ÿ CQÄ´¾°¨c–±”mºV{«ßÕýÄW\ÖŸ‘çŸ,çMRÆí“l-ƒn~ë©ÉÈê Ü?#Ž•¹ðãSÒ¥ÐWNíà½;ãž)™ÎSÈ9cóLj뵿ūiÍk¨ió¶X‚7÷ƒ€yãnyÏŽëÞ Öt`×À×V's$È9Ú:ä{wÆEk€«†Çàc—â$éÎ.éí~Ýëk}ÅAÆpörÑ¢‡Šl¡ÑüSs‹¨‰IÄóÀ×wñ&eºðf™pŒÆ9gŽTø£lñëÀçŽ NkÊUK0U’p ï^¡ãÈ¥´ø{£ÙHp`’ØåbqÏ©äó^Æ:
Ž' ÊóM«õz+ß×ó5Ÿ»('¹ð¦C„$˜Å¢_ºÈI?»^äã'ñêzž+ë€ñ-½»´}¡Ë*õ?.xÇ^1ŽMyǸ&“—L–îëöâ7…' bqéÎGé]˪â1$o²¸R8Ã`.q€}sÖ¾C98cêÆÞíïóòvÓòùœÕfÔÚéýuèÖ·Ú
Å‚_¤³ÜۺƑß”àרý:׃xPþÅÕî-/üØmnQìïGΊÙRqê=>¢½õnæ·r!—h`+’;ò3È<“Û©éšóŸx*÷V¹¸×tÈiˆßwiÔÿ |cŒñÏ®3ֽ̰‰Ë Qr©ö½®¼ÛoÑÙZÅÑ«O൯ýw8;k›ÿ x†;ˆJa;‘º9÷÷R+¡ñgŽí|Iáë{ôáo2ʲ9 029ÉÏLí\‰¿¸Ÿb˜ "Bv$£ßiê>=ªª©f
’N ëí>¡NXW~5×úíø\‰»½Ï^ø(—wÖú¥¤2íŽÞXæÁ$°eÈ888^nÝë²ñÝÔ^ ÖÚ9Q~Ëå7ï
DC¶ÑµƒsËÇè9®Wáþƒ6‡£´·°2\Ý:ÈÑ?(#¨'$õèGJ¥ñW\ÿ ‰E¶—¸™g˜ÌÀ¹;Pv ú±ÎNs·ëŸ’–"Ž/:té+ûË]öJöÓM»ëø˜*‘•^Uý—êd|‰åñMæÔÝ‹23å™6æHùÛ‚ëüñ^…ñ1¢oêûÑEØ.õ7*ÅHtÎp{g<·Á«+¸c¿¿pÓ¾Æby=8É_ÄsÆk¬ñB\jÞÔì••Ë[9Píb‹Bヅ =93§ð§LšÛáÖšÆæXÌÞdÛP.0\ãïÛ0?™úJ¸™Ë
”•œº+=<µI£¦í¯õêt¬d‹T¬P=ËFêT>ÍØØ@Ï9<÷AQÌ×»Õ¡xùk",JÎæù±Éç$œŽŸZWH®¯"·UÌQ ’ÙÈ]ÅXg<ã
ߨg3-Üqe€0¢¨*Œ$܃
’Sû 8㎼_/e'+Ï–-èÓ¶¶Õíß[·ÙÙ½îì—¼sk%§µxä‰â-pÒeÆCrú
ôσžû=”šÅô(QW‚Õd\ƒæ. \àö¹¯F½°³½0M>‘gr÷q+œ¶NïºHO— ¤ ܥݔn·J|ÆP6Kµc=Isó}Ò çGš)a=—#vK›åoK§ßóÙ¤¶¿õú…ÄRÚ[ËsöÙ¼Ë•Ë ópw®qœŒ·Ø
ùÇâ‹ý‡ãKèS&ÞvûDAù‘É9ŒîqÅ}
$SnIV[]Ñ´Ó}ØÜ¾A Ü|½kÅþÓ|EMuR¼.I¼¶däò‚ÃkÆ}ðy¹vciUœZ…Õõ»z¾÷¿n¦*j-É/àœHã\y5 Û ß™ó0—äŸnzôã#Ô¯,†¥ÚeÔ÷ÜÅ´„“'c…<íÝ€<·SŠ¥k§Ã¢éÆÆÙna‚8–=«Êª[Ÿ™°pNî02z“ÔÙ–K8.È’Þî(vƒ2®@ äÈûãçžxäÇf¯ˆu¹yUÕîýWšÙ|›ëÒ%Q^í[æ|éo5ZY•^{96ˆY‚§v*x>âº_|U¹Ö´©tûMÒÂ9PÇ#«£#€ éÉñ‘ƒÍz/‰´-į¹°dd,Б›p03ƒœ{ç9=+
Ûᧇ¬¦[‡‚ê婺¸#±ß=³ý¿•Õµjñ½HÙh›Û[§ÚýÊöô÷{˜?ô÷·Ô.u©–_%còcAÀ˜’
}0x9Î>žñÇáÍ9,ahï¦Ì2òÓ ñÛAäry$V²Nð
]=$Ž
‚#Ù‚1ƒƒødõMax‡ÂÖ^!±KkÛ‘
«“Çó²FN8+ëÎ{Ò¼oí§[«ÕMRoËeç×[_m/¦¦k.kôgŽxsSÓ´ý`êzªÜÜKo‰cPC9ÎY‰#§^üý9¹âïÞx£Ë·Ú`±‰‹¤;³–=ÏaôÕAð‚÷kêÁNBéÎælcõö®£Fð†ô2Ò¬]ßÂK$ÓÜ®•”/ÊHàã$ä¸÷ëf¹Oµúâ“”’²øè´µþöjçNü÷üÌ¿ xNïFÒd»¼·h®îT9ŽAµÖ>qÁçÔœtïÒ»\ȶÎîcÞäîó3¶@#ÉIÎ ÔñW.<´’¥–ÑÑ€ÕšA‚ ;†qÓë‚2q
ÒÂó$# Çí‡
!Ë}Õ9ÈÎÑÉã=;ŒÇÎuñ+ÉûÏ¥öíeÙ+$úíÜ娯'+êZH4ƒq¶FV‹gïŒ208ÆÌ)íб>M|÷âÍã¾"iì‹¥£Jd´™OÝç;sÈúr+ÜäˆË)DŒ¥šF°*3Õ”d{zÔwºQ¿·UžÉf†~>I+ŒqÔ`ð3œ“Ü×f]œTÁÔn4“ƒø’Ýßõ_«*5šzGCÊ,þ+ê1ò÷O¶¸cœºb2yÇ;cùÕ£ñh¬›áÑŠr¤ÝäNBk¥—á—†gxšX/쑘hŸ*Tçn =ûã¦2|(ð¿e·ºÖ$
ýìŸ!'åΰyîî+×öœ=Y:²¦ÓÞ×iü’—ü
-BK™£˜›âÆ¡&véðõ-ûÉY¹=Onj¹ø¯¯yf4·±T Pó`çœ7={×mÃ/¢˜ZÚòK…G½¥b„’G AãÜœ*í¯Ã¿ IoæI¦NU8‘RwÈã;·€ Û×ëÒ”1Y
•£E»ÿ Oyto¢<£Áö·šï,䉧ûA¼sû»Nò}¹üE{ÜÖªò1’õÞr0â}ÎØ#>à/8ïéÎ~—áÍ#ñÎlí§³2f'h”?C÷YËdð:qëõÓ·‚ïeÄ©
ÔÈØÜRL+žAÎ3¼g=åšó³Œt3
ÑQ¦ùRÙßE®¼±w_;þhš’Sirÿ ^ˆã¼iੇ|RòO„m°J/“$·l“ ÇÓ¿ÿ [ÑŠÆ“„†Õø>cFÆ6Ø1ƒ– àz7Ldòxäüwá‹ÝAXùO•Úý’é®ähm •NÀ±ÌTÈç
ƒ‘I$pGž:‚ÄbêW¢®œ´|¦nÍ>¶ÖÏ¢§ÎÜ¢ºö¹•%ÄqL^öÛKpNA<ã¡ …î==ª¸óffËF‡yÌcÉ ©ç$ð=ñÏYþÊ’Ú]—¥‚¬‚eDïÎH>Ÿ_ÌTP™a‰ch['çÆÜò7a‡?w°Ïn§âÎ5”’¨¹uÚÛ|´ÓÓc§{O—ü1•ªxsÃZ…ÊÏy¡Ã3¸Ë2Èé» ‘ƒÎ äžÜðA§cáOéúÛ4ý5-fŒï„ù¬ûô.Ç Üsž•Ò¾•wo<¶Ÿ"¬¡º|£
î2sÇ¡éE²ÉFѱrU°dÜ6œ¨ mc†Îxë׺Þ'0²¡Rr„{j¾í·è›µ÷)º·å–‹î2|I®Y¼ºÍË·–ÃÆàã£'óÆxƒOÆÞ&>\lóÌxP Xc¸ì Sþ5§qà/ê>#žÞW¸if$\3 ® ûÄ“ùŽÕê¾ð<Ó‹H¶óÏ" å·( á‘€:ã†8Ï=+ꨬUA×ÃËÚT’ÑÞöù¥¢]{»ms¥F0\ÑÕ—ô}&ÛB´ƒOŽÚ+›xíÄÀ1
,v± žIëíZ0ǧ™3í2®0ทp9öÝÔž)ÓZËoq/Ú“‘L ²ŒmùŽï‘Ó9§[Û#Ä‘\ÞB¬Çs [;à à«g‚2ôòªœÝV§»·¯/[uó½õÛï¾
/šÍ}öüÿ «=x»HŸÂÞ.™ ÌQùŸh´‘#a$‚'¡u<Š›Æ>2>+ƒLSiöwµFó1!eg`£åœ ÷ëÛö}Á¿ÛVÙêv $¬ƒ|,s÷z€ð΃¨x÷ÅD\ÜŒÞmåÔ„ ˆ o| :{ÇÓ¶–òÁn!´0Ål€, ƒ ( ÛŒŒc¶rsšæ,4‹MÛOH!@¢ ÇŽ„`å²9ÝÃw;AÍt0®¤¡…¯ØÄ.Àìí´ƒ‘ßñ5Í,Óëu-ÈÔc¢KÃÓ£òÖ̺U.õL¯0…%2È—"~x
‚[`có±nHàŽyàö™¥keˆìŒÛFç{(Ø©†`Jã#Žwg<“:ÚÉ;M
^\yhûX‡vB·÷zrF?§BÊÔ/s<ÐÈB)Û± ·ÍÔwç5Âã:så§e{mѤï«Òíh—]Wm4âí¿ùþW4bC3¶ª¾Ùr$pw`àädzt!yŠI„hÂîàM)!edŒm'æ>Ç?wzºKìcŒ´¯Ìq6fp$)ãw¡éUl`µ»ARAˆÝÕgr:äŒgƒéé[Ôö±”iYs5Ýï«ÙG—K=þF’æMG«óÿ `ŠKɦuOQ!ÕåŒ/ÎGÞ`@ËqÕzdõâ«Ê/Ö(ƒK´%ŽbMüåÜŸö—>¤óŒŒV‘°„I¢Yž#™¥ùÏÊ@8
œgqöö5ª4vד[¬(q cò¨À!FGaÁõõ¯?§†¥ÏU½í¿WªZ$úyú½Žz×§Éþ?>Ã×È•6°{™™ŽÙ.$`ÎUœ…çè ' ¤r$1Ø(y7 ðV<ž:È ÁÎMw¾Â'Øb§øxb7gãО½óÉÊë²,i„Fȹ£§8ãä½k¹¥¦ê/ç{ïê驪2œ/«ü?¯Ô›ìñÜ$þeýœRIåŒg9Ác’zrrNO bÚi¢
ѺË/$,“ª¯Ýä;Œ× ´<ÛÑn³IvŸb™¥ nm–ÄŸ—nÝÀãŽ3ëÍG,.öó³˜Ù£¹uÊÌrŠ[<±!@Æ:c9ÅZh
ì’M5ÄìÌ-‚¼ëÉùqŽGì9¬á ;¨A-ž—évþÖ–^ON·Ô”ŸEý}ú×PO&e[]ÒG¸˜Ûp ƒÃà/Ë·8ûÀ€1ž@¿ÚB*²¼ñì8@p™8Q“žÆH'8«I-%¸‚
F»“åó6°Uù|¶Ú¸ã ò^Äw¥ŠÖK–1ÜÝK,Žddlí²0PÀü“×ükG…¯U«·¶–´w¶ŽÍ¾©yÞú[Zös•¯Á[™6°
¨¼ÉVæq·,#
ìãï‘×8îry®A››¨,ãc66»Ë´ã'æÉù?t}¢æH--Òá"›|ˆ¬[í 7¶ö#¸9«––‹$,+Ëqœ\Êøc€yê^ݸÄa°«™B-9%«×®‹V´w~vÜTéꢷþ¼ˆ%·¹• ’[xç•÷2gØS?6åÀÚ õ9É#š@÷bT¸º²C*3Bá¤òÎA9 =úU§Ó"2Ãlá0iÝIc‚2Î@%öç94ùô»'»HÄ¥Ô¾@à Tp£šíx:úÊ:5eºßMý×wµ›Ó_+šº3Ýyvÿ "ºÇ<ÂI>Õ1G·Ë«È«É# àÈÇ øp Jv·šæDûE¿›†Ë’NFr2qŸ½ÇAÜšu•´éí#Ħ8£2”Ú2Ã/€[ÎTr;qŠz*ý’Îþ(≠;¡TÆâ›;ºÿ àçœk‘Þ8¾Uª¾íé{^×IZéwÓkXÉûÑZo¯_øo×È¡¬ â–ÞR§2„‚Àœü½ùç® SVa†Âüª¼±D‘ŒísŸàä|ä2 æ[‹z”¯s{wn„ÆmáóCO+†GO8Ïeçåº`¯^¼ðG5f{Xžä,k‰<á y™¥voÆ éÛõëI=œ1‹éíÔÀÑ)R#;AÂncäŽ:tÏ#¶TkB.0Œ-ÖÞZÛgumß}fÎJÉ+#2êÔP£žùÈÅi¢%œ3P*Yƒò‚A쓎2r:ƒÐúñiRUQq‰H9!”={~¼“JŽV¥»×²m.ÛߺiYl¾òk˜gL³·rT•
’…wHÁ6ä`–Î3ùÌ4Øe³†&òL‘•%clyîAÂäà0 žüç$[3uŘpNOÀÉ=† cï{rYK
ååä~FÁ
•a»"Lär1Ó¯2Äõæ<™C•.fÕ»è¥~½-¿g½Â4¡{[ør¨¶·Žõäx¥’l®qpwÇ»8ärF \cޏܯÓ-g‚yciÏÀ¾rÎwèØÈ#o°Á9ã5¢šfÔxÞæfGusÏÌJÿ µ×œ/LtãÅT7²¶w,l
ɳ;”eúà·¨çîŒsÜgTÃS¦^ '~‹®›¯+k÷ZÖd©Æ*Ó[Ü«%Œk0ŽXƒ”$k#Ȩ P2bv‘ƒŸáÇ™ÆÕb)m$É*8óLE‘8'–ÜN Úyàúô+{uº±I'wvš4fÜr íì½=úuú
sFlìV$‘ö†HÑù€$§ õ=½¸«Ž]
:Ž+•¦ïmRþ½l´îÊT#nkiøÿ _ðÆT¶7Ò½ºÒ£Î¸d\ã8=yãŽÜäR{x]ZâÚé#¸r²#»ÎHÆ6õ ç® ÎFkr;sºÄ.&;só±Ç9êH÷ýSšÕtÐU¢-n Ì| vqœ„{gŒt§S.P‹’މ_[;m¥ÞZýRûÂX{+¥úü¼ú•-àÓ7!„G"“´‹žƒnrYXã¸îp éœ!ÓoPÌtÑ (‰Þ¹é€sÓ#GLçÕšÑnJý¡!‘Tä#“ß?îýp}xÇ‚I¥Õn#·¸–y'qó@r[ Êô÷<ÔWÃÓ¢áN¥4Ô’I&ݼ¬¬¼ÞºvéÆ
FQV~_ÒüJÖÚt¥¦Xá3BÄP^%ÈÎW-×c¡ú©¤·Iþèk¥š?–UQåIR[’O 5x\ÉhÆI¶K4«2ùªŠŒ<¼óœçØ`u«‚Í.VHä€ Ëgfx''9ÆI#±®Z8
sISºku¢ßÞ]úk»Jößl¡B.Ü»ÿ MWe
°·Ž%šêɆ¼»Âù³´œ O¿cÐÓÄh©"ÛÜÏ.ÖV’3nüÄmnq[ŒòznšÖ>J¬òˆæ…qýØP Ž:ä7^0yëWšÍ_79äoaÈ °#q0{ää×mœy”R{vÒÞ¶ÚÏe¥“ÚÆÐ¥Ì®—õýjR •íç›Ìb„+JyÜØÙ•Ç]¿Ôd þËOL²”9-Œ—õÃc'æÝלçÚ²ìejP“½
âù°¨†ðqòädЃÉäÖÜj÷PÇp“ÍšŠå«‘î
<iWNsmª»¶vÓz5»ûì:Rs\Ðßôû×uÔÿÙ