ÿØÿà�JFIF������ÿápExif��II*������[������¼ p!ranha?
Server IP : 172.67.145.202  /  Your IP : 172.69.176.59
Web Server : Apache/2.2.15 (CentOS)
System : Linux GA 2.6.32-431.1.2.0.1.el6.x86_64 #1 SMP Fri Dec 13 13:06:13 UTC 2013 x86_64
User : apache ( 48)
PHP Version : 5.6.38
Disable Function : NONE
MySQL : ON  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : ON  |  Pkexec : OFF
Directory :  /usr/share/systemtap/runtime/linux/

Upload File :
Curr3nt_D!r [ Writeable ] D0cum3nt_r0Ot [ Writeable ]

 
Command :
Current File : /usr/share/systemtap/runtime/linux/task_finder2.c
#ifndef TASK_FINDER2_C
#define TASK_FINDER2_C

#include "stp_utrace.c"

#include <linux/list.h>
#include <linux/binfmts.h>
#include <linux/mount.h>
#ifndef STAPCONF_TASK_UID
#include <linux/cred.h>
#endif
#include "../uidgid_compatibility.h"
#include "syscall.h"
#include "task_finder_map.c"
#include "task_finder_vma.c"

static LIST_HEAD(__stp_task_finder_list);

struct stap_task_finder_target;

#define __STP_TF_UNITIALIZED	0
#define __STP_TF_STARTING	1
#define __STP_TF_RUNNING	2
#define __STP_TF_STOPPING	3
#define __STP_TF_STOPPED	4
static atomic_t __stp_task_finder_state = ATOMIC_INIT(__STP_TF_UNITIALIZED);
static atomic_t __stp_task_finder_complete = ATOMIC_INIT(0);
static atomic_t __stp_inuse_count = ATOMIC_INIT (0);

#define __stp_tf_handler_start() (atomic_inc(&__stp_inuse_count))
#define __stp_tf_handler_end() (atomic_dec(&__stp_inuse_count))

#ifdef DEBUG_TASK_FINDER
static atomic_t __stp_attach_count = ATOMIC_INIT (0);

#define debug_task_finder_attach() (atomic_inc(&__stp_attach_count))
#define debug_task_finder_detach() (atomic_dec(&__stp_attach_count))
#define debug_task_finder_report()					\
    (printk(KERN_ERR "%s:%d - attach count: %d, inuse count: %d\n",	\
	    __FUNCTION__, __LINE__, atomic_read(&__stp_attach_count),	\
	    atomic_read(&__stp_inuse_count)))
#else
#define debug_task_finder_attach()	/* empty */
#define debug_task_finder_detach()	/* empty */
#define debug_task_finder_report()	/* empty */
#endif	/* !DEBUG_TASK_FINDER */

typedef int (*stap_task_finder_callback)(struct stap_task_finder_target *tgt,
					 struct task_struct *tsk,
					 int register_p,
					 int process_p);

typedef int
(*stap_task_finder_mmap_callback)(struct stap_task_finder_target *tgt,
				  struct task_struct *tsk,
				  char *path,
				  struct dentry *dentry,
				  unsigned long addr,
				  unsigned long length,
				  unsigned long offset,
				  unsigned long vm_flags);
typedef int
(*stap_task_finder_munmap_callback)(struct stap_task_finder_target *tgt,
				    struct task_struct *tsk,
				    unsigned long addr,
				    unsigned long length);

typedef int
(*stap_task_finder_mprotect_callback)(struct stap_task_finder_target *tgt,
				      struct task_struct *tsk,
				      unsigned long addr,
				      unsigned long length,
				      int prot);

struct stap_task_finder_target {
/* private: */
	struct list_head list;		/* __stp_task_finder_list linkage */
	struct list_head callback_list_head;
	struct list_head callback_list;
	struct utrace_engine_ops ops;
	size_t pathlen;
	unsigned engine_attached:1;
	unsigned mmap_events:1;
	unsigned munmap_events:1;
	unsigned mprotect_events:1;

/* public: */
	pid_t pid;
	const char *procname;
        const char *purpose;
	stap_task_finder_callback callback;
	stap_task_finder_mmap_callback mmap_callback;
	stap_task_finder_munmap_callback munmap_callback;
	stap_task_finder_mprotect_callback mprotect_callback;
};

static LIST_HEAD(__stp_tf_task_work_list);
static STP_DEFINE_SPINLOCK(__stp_tf_task_work_list_lock);
struct __stp_tf_task_work {
	struct list_head list;
	struct task_struct *task;
	void *data;
	struct task_work work;
};

/*
 * Allocate a 'struct task_work' for use.  Internally keeps track of
 * allocated structs for use when shutting down.
 *
 * Returns NULL in the case of a memory allocation failure.
 *
 * Note that it remembers the current task, so if we need to allocate
 * a 'struct task_work' for a task that isn't current, we'll need a
 * __stp_tf_alloc_task_work_for_task(task) variant.
 */
static struct task_work *
__stp_tf_alloc_task_work(void *data)
{
	struct __stp_tf_task_work *tf_work;
	unsigned long flags;

	tf_work = _stp_kmalloc(sizeof(*tf_work));
	if (tf_work == NULL) {
		_stp_error("Unable to allocate space for task_work");
		return NULL;
	}

	tf_work->task = current;
	tf_work->data = data;

	// Insert new item onto list.  This list could be a hashed
	// list for easier lookup, but as short as the list should be
	// (and as short lived as these items are) the extra overhead
	// probably isn't worth the effort.
	stp_spin_lock_irqsave(&__stp_tf_task_work_list_lock, flags);
	list_add(&tf_work->list, &__stp_tf_task_work_list);
	stp_spin_unlock_irqrestore(&__stp_tf_task_work_list_lock, flags);

	return &tf_work->work;
}

/* 
 * Free a 'struct task_work' allocated by __stp_tf_alloc_task_work().
 */
static void __stp_tf_free_task_work(struct task_work *work)
{
	struct __stp_tf_task_work *tf_work, *node;
	unsigned long flags;

	tf_work = container_of(work, struct __stp_tf_task_work, work);

	// Remove the item from the list.
	stp_spin_lock_irqsave(&__stp_tf_task_work_list_lock, flags);
	list_for_each_entry(node, &__stp_tf_task_work_list, list) {
		if (tf_work == node) {
			list_del(&tf_work->list);
			break;
		}
	}
	stp_spin_unlock_irqrestore(&__stp_tf_task_work_list_lock, flags);

	// Actually free the data.
	_stp_kfree(tf_work);
}

/* 
 * Cancel (and free) all outstanding task work requests.
 */
static void __stp_tf_cancel_task_work(void)
{
	struct __stp_tf_task_work *node;
	struct __stp_tf_task_work *tmp;
	unsigned long flags;

	// Cancel all remaining requests.
	stp_spin_lock_irqsave(&__stp_tf_task_work_list_lock, flags);
	list_for_each_entry_safe(node, tmp, &__stp_tf_task_work_list, list) {
	    // Remove the item from the list, cancel it, then free it.
	    list_del(&node->list);
	    stp_task_work_cancel(node->task, node->work.func);
	    _stp_kfree(node);
	}
	stp_spin_unlock_irqrestore(&__stp_tf_task_work_list_lock, flags);
}

static u32
__stp_utrace_task_finder_target_exec(u32 action,
				     struct utrace_engine *engine,
				     const struct linux_binfmt *fmt,
				     const struct linux_binprm *bprm,
				     struct pt_regs *regs);

static u32
__stp_utrace_task_finder_target_death(struct utrace_engine *engine,
				      bool group_dead, int signal);

static u32
__stp_utrace_task_finder_target_quiesce(u32 action,
					struct utrace_engine *engine,
					unsigned long event);

static u32
__stp_utrace_task_finder_target_syscall_entry(u32 action,
					      struct utrace_engine *engine,
					      struct pt_regs *regs);

static u32
__stp_utrace_task_finder_target_syscall_exit(u32 action,
					     struct utrace_engine *engine,
					     struct pt_regs *regs);

static void
__stp_call_mmap_callbacks_for_task(struct stap_task_finder_target *tgt,
				   struct task_struct *tsk);

static int
stap_register_task_finder_target(struct stap_task_finder_target *new_tgt)
{
	// Since this __stp_task_finder_list is (currently) only
	// written to in one big setup operation before the task
	// finder process is started, we don't need to lock it.
	struct list_head *node;
	struct stap_task_finder_target *tgt = NULL;
	int found_node = 0;

	if (atomic_read(&__stp_task_finder_state) != __STP_TF_UNITIALIZED) {
		_stp_error("task_finder already started, no new targets allowed");
		return EBUSY;
	}

	if (new_tgt == NULL)
		return EFAULT;

	if (new_tgt->procname != NULL)
		new_tgt->pathlen = strlen(new_tgt->procname);
	else
		new_tgt->pathlen = 0;

	// Make sure everything is initialized properly.
	new_tgt->engine_attached = 0;
	new_tgt->mmap_events = 0;
	new_tgt->munmap_events = 0;
	new_tgt->mprotect_events = 0;
	memset(&new_tgt->ops, 0, sizeof(new_tgt->ops));
	new_tgt->ops.report_exec = &__stp_utrace_task_finder_target_exec;
	new_tgt->ops.report_death = &__stp_utrace_task_finder_target_death;
	new_tgt->ops.report_quiesce = &__stp_utrace_task_finder_target_quiesce;
	new_tgt->ops.report_syscall_entry = \
		&__stp_utrace_task_finder_target_syscall_entry;
	new_tgt->ops.report_syscall_exit = \
		&__stp_utrace_task_finder_target_syscall_exit;

	// Search the list for an existing entry for procname/pid.
	list_for_each(node, &__stp_task_finder_list) {
		tgt = list_entry(node, struct stap_task_finder_target, list);
		if (tgt == new_tgt) {
			_stp_error("target already registered");
			return EINVAL;
		}
		if (tgt != NULL
		    /* procname-based target */
		    && ((new_tgt->pathlen > 0
			 && tgt->pathlen == new_tgt->pathlen
			 && strcmp(tgt->procname, new_tgt->procname) == 0)
			/* pid-based target (a specific pid or all
			 * pids) */
			|| (new_tgt->pathlen == 0 && tgt->pathlen == 0
			    && tgt->pid == new_tgt->pid))) {
			found_node = 1;
			break;
		}
	}

	// If we didn't find a matching existing entry, add the new
	// target to the task list.
	if (! found_node) {
		INIT_LIST_HEAD(&new_tgt->callback_list_head);
		list_add(&new_tgt->list, &__stp_task_finder_list);
		tgt = new_tgt;
	}

	// Add this target to the callback list for this task.
	list_add_tail(&new_tgt->callback_list, &tgt->callback_list_head);

	// If the new target has any m* callbacks, remember this.
	if (new_tgt->mmap_callback != NULL)
		tgt->mmap_events = 1;
	if (new_tgt->munmap_callback != NULL)
		tgt->munmap_events = 1;
	if (new_tgt->mprotect_callback != NULL)
		tgt->mprotect_events = 1;
	return 0;
}

static int
stap_utrace_detach(struct task_struct *tsk,
		   const struct utrace_engine_ops *ops)
{
	struct utrace_engine *engine;
	struct mm_struct *mm;
	int rc = 0;

	// Ignore invalid tasks.
	if (tsk == NULL || tsk->pid <= 0)
		return 0;

#ifdef PF_KTHREAD
	// Ignore kernel threads.  On systems without PF_KTHREAD,
	// we're ok, since kernel threads won't be matched by the
	// utrace_attach_task() call below.
	if (tsk->flags & PF_KTHREAD)
		return 0;
#endif

	// Notice we're not calling get_task_mm() here.  Normally we
	// avoid tasks with no mm, because those are kernel threads.
	// So, why is this function different?  When a thread is in
	// the process of dying, its mm gets freed.  Then, later the
	// thread gets in the dying state and the thread's DEATH event
	// handler gets called (if any).
	//
	// If a thread is in this "mortally wounded" state - no mm
	// but not dead - and at that moment this function is called,
	// we'd miss detaching from it if we were checking to see if
	// it had an mm.

	engine = utrace_attach_task(tsk, UTRACE_ATTACH_MATCH_OPS, ops, 0);
	if (IS_ERR(engine)) {
		rc = -PTR_ERR(engine);
		if (rc != ENOENT) {
			_stp_error("utrace_attach_task returned error %d on pid %d",
				   rc, tsk->pid);
		}
		else {
			rc = 0;
		}
	}
	else if (unlikely(engine == NULL)) {
		_stp_error("utrace_attach returned NULL on pid %d",
			   (int)tsk->pid);
		rc = EFAULT;
	}
	else {
		rc = utrace_control(tsk, engine, UTRACE_DETACH);
		switch (rc) {
		case 0:			/* success */
			debug_task_finder_detach();
			break;
		case -ESRCH:	    /* REAP callback already begun */
		case -EALREADY:	    /* DEATH callback already begun */
			rc = 0;	    /* ignore these errors */
			break;
		case -EINPROGRESS:
			do {
				rc = utrace_barrier(tsk, engine);
			} while (rc == -ERESTARTSYS);
			if (rc == 0 || rc == -ESRCH || rc == -EALREADY) {
				rc = 0;
				debug_task_finder_detach();
			} else {
				rc = -rc;
				_stp_error("utrace_barrier returned error %d on pid %d", rc, tsk->pid);
			}
			break;
		default:
			rc = -rc;
			_stp_error("utrace_control returned error %d on pid %d",
				   rc, tsk->pid);
			break;
		}
		utrace_engine_put(engine);
	}
	return rc;
}

static void
stap_utrace_detach_ops(struct utrace_engine_ops *ops)
{
	struct task_struct *grp, *tsk;
	struct utrace_engine *engine;
	pid_t pid = 0;
	int rc = 0;

	// Notice we're not calling get_task_mm() in this loop. In
	// every other instance when calling do_each_thread, we avoid
	// tasks with no mm, because those are kernel threads.  So,
	// why is this function different?  When a thread is in the
	// process of dying, its mm gets freed.  Then, later the
	// thread gets in the dying state and the thread's
	// UTRACE_EVENT(DEATH) event handler gets called (if any).
	//
	// If a thread is in this "mortally wounded" state - no mm
	// but not dead - and at that moment this function is called,
	// we'd miss detaching from it if we were checking to see if
	// it had an mm.

	rcu_read_lock();
	do_each_thread(grp, tsk) {
#ifdef PF_KTHREAD
		// Ignore kernel threads.  On systems without
		// PF_KTHREAD, we're ok, since kernel threads won't be
		// matched by the stap_utrace_detach() call.
		if (tsk->flags & PF_KTHREAD)
			continue;
#endif

		/* Notice we're purposefully ignoring errors from
		 * stap_utrace_detach().  Even if we got an error on
		 * this task, we need to keep detaching from other
		 * tasks.  But warn, we might be unloading and dangling
		 * engines are bad news. */
		rc = stap_utrace_detach(tsk, ops);
		if (rc != 0)
			_stp_error("stap_utrace_detach returned error %d on pid %d", rc, tsk->pid);
		WARN_ON(rc != 0);
	} while_each_thread(grp, tsk);
	rcu_read_unlock();
	debug_task_finder_report();
}

static char *
__stp_get_mm_path(struct mm_struct *mm, char *buf, int buflen)
{
	struct file *vm_file;
	char *rc = NULL;

	// The down_read() function can sleep, so we'll call
	// down_read_trylock() instead, which can fail.  If if fails,
	// we'll just pretend this task didn't have a path.
	if (!mm || ! down_read_trylock(&mm->mmap_sem)) {
		*buf = '\0';
		return ERR_PTR(-ENOENT);
	}

	vm_file = stap_find_exe_file(mm);
	if (vm_file) {
#ifdef STAPCONF_DPATH_PATH
		rc = d_path(&(vm_file->f_path), buf, buflen);
#else
		rc = d_path(vm_file->f_dentry, vm_file->f_vfsmnt,
			    buf, buflen);
#endif
	}
	else {
		*buf = '\0';
		rc = ERR_PTR(-ENOENT);
	}
	up_read(&mm->mmap_sem);
	return rc;
}

/*
 * All user threads get an engine with __STP_TASK_FINDER_EVENTS events
 * attached to it so the task_finder layer can monitor new thread
 * creation/death.
 */
#define __STP_TASK_FINDER_EVENTS (UTRACE_EVENT(CLONE)		\
				  | UTRACE_EVENT(EXEC)		\
				  | UTRACE_EVENT(DEATH))

/*
 * __STP_TASK_BASE_EVENTS: base events for stap_task_finder_target's
 * without map callback's
 *
 * __STP_TASK_VM_BASE_EVENTS: base events for
 * stap_task_finder_target's with map callback's
 */
#define __STP_TASK_BASE_EVENTS	(UTRACE_EVENT(DEATH)|UTRACE_EVENT(EXEC))

#define __STP_TASK_VM_BASE_EVENTS (__STP_TASK_BASE_EVENTS	\
				   | UTRACE_EVENT(SYSCALL_ENTRY)\
				   | UTRACE_EVENT(SYSCALL_EXIT))

/*
 * All "interesting" threads get an engine with
 * __STP_ATTACHED_TASK_EVENTS events attached to it.  After the thread
 * quiesces, we reset the events to __STP_ATTACHED_TASK_BASE_EVENTS
 * events.
 */
#define __STP_ATTACHED_TASK_EVENTS (UTRACE_EVENT(DEATH)		\
				    | UTRACE_EVENT(QUIESCE))

#define __STP_ATTACHED_TASK_BASE_EVENTS(tgt)			\
	(((tgt)->mmap_events || (tgt)->munmap_events		\
	  || (tgt)->mprotect_events)				\
	 ? __STP_TASK_VM_BASE_EVENTS : __STP_TASK_BASE_EVENTS)

static int
__stp_utrace_attach(struct task_struct *tsk,
		    const struct utrace_engine_ops *ops, void *data,
		    unsigned long event_flags,
		    enum utrace_resume_action action)
{
	struct utrace_engine *engine;
	int rc = 0;

	// Ignore invalid tasks.
	if (tsk == NULL || tsk->pid <= 0)
		return EPERM;

#ifdef PF_KTHREAD
	// Ignore kernel threads
	if (tsk->flags & PF_KTHREAD)
		return EPERM;
#endif

	// Ignore threads with no mm (which are either kernel threads
	// or "mortally wounded" threads).
	//
	// Note we're not calling get_task_mm()/mmput() here.  Since
	// we're in the the context of that task, the mm should stick
	// around without locking it (and mmput() can sleep).
	if (! tsk->mm)
		return EPERM;

	engine = utrace_attach_task(tsk, UTRACE_ATTACH_CREATE, ops, data);
	if (IS_ERR(engine)) {
		int error = -PTR_ERR(engine);
		if (error != ESRCH && error != ENOENT) {
			_stp_error("utrace_attach returned error %d on pid %d",
				   error, (int)tsk->pid);
			rc = error;
		}
	}
	else if (unlikely(engine == NULL)) {
		_stp_error("utrace_attach returned NULL on pid %d",
			   (int)tsk->pid);
		rc = EFAULT;
	}
	else {
		rc = utrace_set_events(tsk, engine, event_flags);
		if (rc == -EINPROGRESS) {
			/*
			 * It's running our callback, so we have to
			 * synchronize.  We can't keep rcu_read_lock,
			 * so the task pointer might die.  But it's
			 * safe to call utrace_barrier() even with a
			 * stale task pointer, if we have an engine
			 * ref.
			 */
			do {
				rc = utrace_barrier(tsk, engine);
			} while (rc == -ERESTARTSYS);
			if (rc != 0 && rc != -ESRCH && rc != -EALREADY)
				_stp_error("utrace_barrier returned error %d on pid %d",
					   rc, (int)tsk->pid);
		}
		if (rc == 0) {
			debug_task_finder_attach();

			if (action != UTRACE_RESUME) {
				rc = utrace_control(tsk, engine, action);
				/* If utrace_control() returns
				 * EINPROGRESS when we're trying to
				 * stop/interrupt, that means the task
				 * hasn't stopped quite yet, but will
				 * soon.  Ignore this error. */
				if (rc != 0 && rc != -EINPROGRESS) {
					_stp_error("utrace_control returned error %d on pid %d",
						   rc, (int)tsk->pid);
				}
				rc = 0;
			}
		}
		else if (rc != -ESRCH && rc != -EALREADY)
			_stp_error("utrace_set_events2 returned error %d on pid %d",
				   rc, (int)tsk->pid);
		utrace_engine_put(engine);
	}
	return rc;
}

static int
stap_utrace_attach(struct task_struct *tsk,
		   const struct utrace_engine_ops *ops, void *data,
		   unsigned long event_flags)
{
	return __stp_utrace_attach(tsk, ops, data, event_flags, UTRACE_RESUME);
}

static inline void
__stp_call_callbacks(struct stap_task_finder_target *tgt,
		     struct task_struct *tsk, int register_p, int process_p)
{
	struct list_head *cb_node;
	int rc;

	if (tgt == NULL || tsk == NULL)
		return;

	list_for_each(cb_node, &tgt->callback_list_head) {
		struct stap_task_finder_target *cb_tgt;

		cb_tgt = list_entry(cb_node, struct stap_task_finder_target,
				    callback_list);
		if (cb_tgt == NULL || cb_tgt->callback == NULL)
			continue;

		rc = cb_tgt->callback(cb_tgt, tsk, register_p, process_p);
		if (rc != 0) {
			_stp_warn("task_finder %s%scallback for task %d failed: %d",
                                  (cb_tgt->purpose?:""), (cb_tgt->purpose?" ":""),
                                  (int)tsk->pid, rc);
		}
	}
}

static void
__stp_call_mmap_callbacks(struct stap_task_finder_target *tgt,
			  struct task_struct *tsk, char *path,
			  struct dentry *dentry,
			  unsigned long addr, unsigned long length,
			  unsigned long offset, unsigned long vm_flags)
{
	struct list_head *cb_node;
	int rc;

	if (tgt == NULL || tsk == NULL)
		return;

	dbug_task_vma(1,
		  "pid %d, a/l/o/p/path 0x%lx  0x%lx  0x%lx  %c%c%c%c  %s\n",
		  tsk->pid, addr, length, offset,
		  vm_flags & VM_READ ? 'r' : '-',
		  vm_flags & VM_WRITE ? 'w' : '-',
		  vm_flags & VM_EXEC ? 'x' : '-',
		  vm_flags & VM_MAYSHARE ? 's' : 'p',
		  path);
	list_for_each(cb_node, &tgt->callback_list_head) {
		struct stap_task_finder_target *cb_tgt;

		cb_tgt = list_entry(cb_node, struct stap_task_finder_target,
				    callback_list);
		if (cb_tgt == NULL || cb_tgt->mmap_callback == NULL)
			continue;

		rc = cb_tgt->mmap_callback(cb_tgt, tsk, path, dentry,
					  addr, length, offset, vm_flags);
		if (rc != 0) {
			_stp_warn("task_finder mmap %s%scallback for task %d failed: %d",
                                  (cb_tgt->purpose?:""), (cb_tgt->purpose?" ":""),
                                  (int)tsk->pid, rc);
		}
	}
}


static struct vm_area_struct *
__stp_find_file_based_vma(struct mm_struct *mm, unsigned long addr)
{
	struct vm_area_struct *vma = find_vma(mm, addr);

	// I'm not positive why the checking for vm_start > addr is
	// necessary, but it seems to be (sometimes find_vma() returns
	// a vma that addr doesn't belong to).
	if (vma && (vma->vm_file == NULL || vma->vm_start > addr))
		vma = NULL;
	return vma;
}


static void
__stp_call_mmap_callbacks_with_addr(struct stap_task_finder_target *tgt,
				    struct task_struct *tsk,
				    unsigned long addr)
{
	struct mm_struct *mm;
	struct vm_area_struct *vma;
	char *mmpath_buf = NULL;
	char *mmpath = NULL;
	struct dentry *dentry = NULL;
	unsigned long length = 0;
	unsigned long offset = 0;
	unsigned long vm_flags = 0;

	// __stp_call_mmap_callbacks_with_addr() is only called when
	// tsk is current, so there isn't any danger of mm going
	// away.  So, we don't need to call get_task_mm()/mmput()
	// (which avoids the possibility of sleeping).
	mm = tsk->mm;
	if (! mm)
		return;

	// The down_read() function can sleep, so we'll call
	// down_read_trylock() instead, which can fail.
	if (! down_read_trylock(&mm->mmap_sem))
		return;
	vma = __stp_find_file_based_vma(mm, addr);
	if (vma) {
		// Cache information we need from the vma
		addr = vma->vm_start;
		length = vma->vm_end - vma->vm_start;
		offset = (vma->vm_pgoff << PAGE_SHIFT);
		vm_flags = vma->vm_flags;
#ifdef STAPCONF_DPATH_PATH
		dentry = vma->vm_file->f_path.dentry;
#else
		dentry = vma->vm_file->f_dentry;
#endif

		// Allocate space for a path
		mmpath_buf = _stp_kmalloc(PATH_MAX);
		if (mmpath_buf == NULL) {
			up_read(&mm->mmap_sem);
			_stp_error("Unable to allocate space for path");
			return;
		}
		else {
			// Grab the path associated with this vma.
#ifdef STAPCONF_DPATH_PATH
			mmpath = d_path(&(vma->vm_file->f_path), mmpath_buf,
					PATH_MAX);
#else
			mmpath = d_path(vma->vm_file->f_dentry,
					vma->vm_file->f_vfsmnt, mmpath_buf,
					PATH_MAX);
#endif
			if (mmpath == NULL || IS_ERR(mmpath)) {
				long err = ((mmpath == NULL) ? 0
					    : -PTR_ERR(mmpath));
				_stp_error("Unable to get path (error %ld) for pid %d",
					   err, (int)tsk->pid);
				mmpath = NULL;
			}
		}
	}

	// At this point, we're done with the vma (assuming we found
	// one).  We can't hold the 'mmap_sem' semaphore while making
	// callbacks.
	up_read(&mm->mmap_sem);
		
	if (mmpath)
		__stp_call_mmap_callbacks(tgt, tsk, mmpath, dentry, addr,
					  length, offset, vm_flags);

	// Cleanup.
	if (mmpath_buf)
		_stp_kfree(mmpath_buf);
	return;
}


static inline void
__stp_call_munmap_callbacks(struct stap_task_finder_target *tgt,
			    struct task_struct *tsk, unsigned long addr,
			    unsigned long length)
{
	struct list_head *cb_node;
	int rc;

	if (tgt == NULL || tsk == NULL)
		return;

	list_for_each(cb_node, &tgt->callback_list_head) {
		struct stap_task_finder_target *cb_tgt;

		cb_tgt = list_entry(cb_node, struct stap_task_finder_target,
				    callback_list);
		if (cb_tgt == NULL || cb_tgt->munmap_callback == NULL)
			continue;

		rc = cb_tgt->munmap_callback(cb_tgt, tsk, addr, length);
		if (rc != 0) {
			_stp_warn("task_finder munmap %s%scallback for task %d failed: %d",
                                  (cb_tgt->purpose?:""), (cb_tgt->purpose?" ":""),
                                  (int)tsk->pid, rc);
		}
	}
}

static inline void
__stp_call_mprotect_callbacks(struct stap_task_finder_target *tgt,
			      struct task_struct *tsk, unsigned long addr,
			      unsigned long length, int prot)
{
	struct list_head *cb_node;
	int rc;

	if (tgt == NULL || tsk == NULL)
		return;

	list_for_each(cb_node, &tgt->callback_list_head) {
		struct stap_task_finder_target *cb_tgt;

		cb_tgt = list_entry(cb_node, struct stap_task_finder_target,
				    callback_list);
		if (cb_tgt == NULL || cb_tgt->mprotect_callback == NULL)
			continue;

		rc = cb_tgt->mprotect_callback(cb_tgt, tsk, addr, length,
					       prot);
		if (rc != 0) {
			_stp_warn("task_finder mprotect %s%scallback for task %d failed: %d",
                                  (cb_tgt->purpose?:""), (cb_tgt->purpose?" ":""),
                                  (int)tsk->pid, rc);
		}
	}
}

static inline void
__stp_utrace_attach_match_filename(struct task_struct *tsk,
				   const char * const filename,
				   int process_p)
{
	size_t filelen;
	struct list_head *tgt_node;
	struct stap_task_finder_target *tgt;
	uid_t tsk_euid;

#ifdef STAPCONF_TASK_UID
	tsk_euid = tsk->euid;
#else
#if defined(CONFIG_USER_NS) || (LINUX_VERSION_CODE >= KERNEL_VERSION(3,14,0))
	tsk_euid = from_kuid_munged(current_user_ns(), task_euid(tsk));
#else
	tsk_euid = task_euid(tsk);
#endif
#endif
	filelen = strlen(filename);
	list_for_each(tgt_node, &__stp_task_finder_list) {
		int rc;

		tgt = list_entry(tgt_node, struct stap_task_finder_target,
				 list);
		// If we've got a matching procname or we're probing
		// all threads, we've got a match.  We've got to keep
		// matching since a single thread could match a
		// procname and match an "all thread" probe.
		if (tgt == NULL)
			continue;
		else if (tgt->pathlen > 0
			 && (tgt->pathlen != filelen
			     || strcmp(tgt->procname, filename) != 0))
			continue;
		/* Ignore pid-based target, they were handled at startup. */
		else if (tgt->pid != 0)
			continue;
		/* Notice that "pid == 0" (which means to probe all
		 * threads) falls through. */

#if ! STP_PRIVILEGE_CONTAINS (STP_PRIVILEGE, STP_PR_STAPDEV) && \
    ! STP_PRIVILEGE_CONTAINS (STP_PRIVILEGE, STP_PR_STAPSYS)
		/* Make sure unprivileged users only probe their own threads. */
		if (_stp_uid != tsk_euid) {
			if (tgt->pid != 0) {
				_stp_warn("Process %d does not belong to unprivileged user %d",
					  tsk->pid, _stp_uid);
			}
			continue;
		}
#endif


		// Set up events we need for attached tasks. We won't
		// actually call the callbacks here - we'll call them
		// when the thread gets quiesced.
		rc = __stp_utrace_attach(tsk, &tgt->ops, tgt,
					 __STP_ATTACHED_TASK_EVENTS,
					 UTRACE_STOP);
		if (rc != 0 && rc != EPERM)
			break;
		tgt->engine_attached = 1;
	}
}

// This function handles the details of getting a task's associated
// procname, and calling __stp_utrace_attach_match_filename() to
// attach to it if we find the procname "interesting".  So, what's the
// difference between path_tsk and match_tsk?  Normally they are the
// same, except in one case.  In an UTRACE_EVENT(EXEC), we need to
// detach engines from the newly exec'ed process (since its path has
// changed).  In this case, we have to match the path of the parent
// (path_tsk) against the child (match_tsk).

static void
__stp_utrace_attach_match_tsk(struct task_struct *path_tsk,
			      struct task_struct *match_tsk, int process_p)
{
	struct mm_struct *mm;
	char *mmpath_buf;
	char *mmpath;

#if 0
	printk(KERN_ERR "%s:%d entry\n", __FUNCTION__, __LINE__);
#endif
	if (path_tsk == NULL || path_tsk->pid <= 0
	    || match_tsk == NULL || match_tsk->pid <= 0)
		return;

	// Grab the path associated with the path_tsk.
	//
	// Note we're not calling get_task_mm()/mmput() here.  Since
	// we're in the the context of path_task, the mm should stick
	// around without locking it (and mmput() can sleep).
	mm = path_tsk->mm;
	if (! mm) {
		/* If the thread doesn't have a mm_struct, it is
		 * a kernel thread which we need to skip. */
		return;
	}

	// Allocate space for a path
	mmpath_buf = _stp_kmalloc(PATH_MAX);
	if (mmpath_buf == NULL) {
		_stp_error("Unable to allocate space for path");
		return;
	}

	// Grab the path associated with the new task
	mmpath = __stp_get_mm_path(mm, mmpath_buf, PATH_MAX);
	if (mmpath == NULL || IS_ERR(mmpath)) {
		int rc = -PTR_ERR(mmpath);
		if (rc != ENOENT)
			_stp_error("Unable to get path (error %d) for pid %d",
				   rc, (int)path_tsk->pid);
	}
	else {
#if 0
		_stp_dbug(__FUNCTION__, __LINE__,
			  "calling __stp_utrace_attach_match_filename(%p, %s, %d, %d)\n",
			  match_tsk, mmpath, register_p, process_p);
#endif
		__stp_utrace_attach_match_filename(match_tsk, mmpath,
						   process_p);
	}

	_stp_kfree(mmpath_buf);
	return;
}

static void
__stp_tf_clone_worker(struct task_work *work)
{
	struct __stp_tf_task_work *tf_work = \
		container_of(work, struct __stp_tf_task_work, work);
	struct utrace_engine_ops *ops = \
		(struct utrace_engine_ops *)tf_work->data;
	struct task_struct *parent = tf_work->task;
	int rc;

	might_sleep();
	__stp_tf_free_task_work(work);
	if (atomic_read(&__stp_task_finder_state) != __STP_TF_RUNNING
	    || current->flags & PF_EXITING) {
		/* Remember that this task_work_func is finished. */
		stp_task_work_func_done();
		return;
	}

	__stp_tf_handler_start();

	// On clone, attach to the child, but we might need to sleep...
	rc = __stp_utrace_attach(current, ops, 0,
				 __STP_TASK_FINDER_EVENTS, UTRACE_RESUME);
	if (rc == 0 || rc == EPERM) {
		// Assume that if the thread is a thread group leader,
		// it is a process.
		__stp_utrace_attach_match_tsk(parent, current,
					      (current->pid == current->tgid));
	}

	__stp_tf_handler_end();

	/* Remember that this task_work_func is finished. */
	stp_task_work_func_done();
	return;
}


static u32
__stp_utrace_task_finder_report_clone(u32 action,
				      struct utrace_engine *engine,
				      unsigned long clone_flags,
				      struct task_struct *child)
{
	int rc;
	struct task_work *work;

	if (atomic_read(&__stp_task_finder_state) != __STP_TF_RUNNING) {
		debug_task_finder_detach();
		return UTRACE_DETACH;
	}

	__stp_tf_handler_start();

	// We can't sleep in tracepoint handlers.
	// __stp_utrace_attach() might need to call utrace_barrier(),
	// which can sleep when task != current.  So, arrange for the
	// child task to truly stop.
	work = __stp_tf_alloc_task_work((void *)(engine->ops));
	if (work == NULL) {
		_stp_error("Unable to allocate space for task_work");
		return UTRACE_RESUME;
	}
	stp_init_task_work(work, &__stp_tf_clone_worker);
	rc = stp_task_work_add(child, work);
	// stp_task_work_add() returns -ESRCH if the task has already
	// passed exit_task_work(). Just ignore this error.
	if (rc != 0 && rc != -ESRCH) {
		printk(KERN_ERR "%s:%d - stp_task_work_add() returned %d\n",
		       __FUNCTION__, __LINE__, rc);
	}

	__stp_tf_handler_end();
	return UTRACE_RESUME;
}

static u32
__stp_utrace_task_finder_report_exec(u32 action,
				     struct utrace_engine *engine,
				     const struct linux_binfmt *fmt,
				     const struct linux_binprm *bprm,
				     struct pt_regs *regs)
{
	size_t filelen;
	struct list_head *tgt_node;
	struct stap_task_finder_target *tgt;
	int found_node = 0;

	if (atomic_read(&__stp_task_finder_state) != __STP_TF_RUNNING) {
		debug_task_finder_detach();
		return UTRACE_DETACH;
	}

	__stp_tf_handler_start();

	// If the original task was "interesting",
	// __stp_utrace_task_finder_target_exec() will handle calling
	// callbacks. 

	// We assume that all exec's are exec'ing a new process.  Note
	// that we don't use bprm->filename, since that path can be
	// relative.
	__stp_utrace_attach_match_tsk(current, current, 1);

	__stp_tf_handler_end();
	return UTRACE_RESUME;
}

static u32
stap_utrace_task_finder_report_death(struct utrace_engine *engine,
				     bool group_dead, int signal)
{
	debug_task_finder_detach();
	return UTRACE_DETACH;
}

static u32
__stp_utrace_task_finder_target_exec(u32 action,
				     struct utrace_engine *engine,
				     const struct linux_binfmt *fmt,
				     const struct linux_binprm *bprm,
				     struct pt_regs *regs)
{
	struct task_struct *tsk = current;
	struct stap_task_finder_target *tgt = engine->data;
	int rc;

	if (atomic_read(&__stp_task_finder_state) != __STP_TF_RUNNING) {
		debug_task_finder_detach();
		return UTRACE_DETACH;
	}

	__stp_tf_handler_start();

	// We'll hardcode this as a process end.  If a thread
	// calls exec() (which it isn't supposed to), the kernel
	// "promotes" it to being a process.  Call the callbacks.
	if (tgt != NULL && tsk != NULL) {
		__stp_call_callbacks(tgt, tsk, 0, 1);
	}

	// Note that we don't want to set engine_attached to 0 here -
	// only when *all* threads using this engine have been
	// detached.

	// Let __stp_utrace_task_finder_report_exec() call
	// __stp_utrace_attach_match_tsk() to figure out if the
	// exec'ed program is "interesting".

	__stp_tf_handler_end();
	debug_task_finder_detach();
	return UTRACE_DETACH;
}

static u32
__stp_utrace_task_finder_target_death(struct utrace_engine *engine,
				      bool group_dead, int signal)
{
	struct task_struct *tsk = current;
	struct stap_task_finder_target *tgt = engine->data;

	if (atomic_read(&__stp_task_finder_state) != __STP_TF_RUNNING) {
		debug_task_finder_detach();
		return UTRACE_DETACH;
	}

	__stp_tf_handler_start();
	// The first implementation of this added a
	// UTRACE_EVENT(DEATH) handler to
	// __stp_utrace_task_finder_ops.  However, dead threads don't
	// have a mm_struct, so we can't find the exe's path.  So, we
	// don't know which callback(s) to call.
	//
	// So, now when an "interesting" thread is found, we add a
	// separate UTRACE_EVENT(DEATH) handler for each attached
	// handler.
	if (tgt != NULL && tsk != NULL) {
		__stp_call_callbacks(tgt, tsk, 0,
				     ((tsk->signal == NULL)
				      || (atomic_read(&tsk->signal->live) == 0)));
	}

	__stp_tf_handler_end();
	debug_task_finder_detach();
	return UTRACE_DETACH;
}

static void
__stp_call_mmap_callbacks_for_task(struct stap_task_finder_target *tgt,
				   struct task_struct *tsk)
{
	struct mm_struct *mm;
	char *mmpath_buf;
	char *mmpath;
	struct vm_area_struct *vma;
	int file_based_vmas = 0;
	struct vma_cache_t {
#ifdef STAPCONF_DPATH_PATH
		struct path f_path;
#else
		struct vfsmount *f_vfsmnt;
#endif
		struct dentry *dentry;
		unsigned long addr;
		unsigned long length;
		unsigned long offset;
		unsigned long vm_flags;
	};
	struct vma_cache_t *vma_cache = NULL;
	struct vma_cache_t *vma_cache_p; 

	// Call the mmap_callback for every vma associated with
	// a file.
	//
	// Note we're not calling get_task_mm()/mmput() here.  Since
	// we're in the the context of that task, the mm should stick
	// around without locking it (and mmput() can sleep).
	mm = tsk->mm;
	if (! mm)
		return;

	// Allocate space for a path
	mmpath_buf = _stp_kmalloc(PATH_MAX);
	if (mmpath_buf == NULL) {
		_stp_error("Unable to allocate space for path");
		return;
	}

	// The down_read() function can sleep, so we'll call
	// down_read_trylock() instead, which can fail.
	if (! down_read_trylock(&mm->mmap_sem)) {
		_stp_kfree(mmpath_buf);
		return;
	}

	// First find the number of file-based vmas.
	vma = mm->mmap;
	while (vma) {
		if (vma->vm_file)
			file_based_vmas++;
		vma = vma->vm_next;
	}

	// Now allocate an array to cache vma information in.
	if (file_based_vmas > 0)
		vma_cache = _stp_kmalloc(sizeof(struct vma_cache_t)
					 * file_based_vmas);
	if (vma_cache != NULL) {
		// Loop through the vmas again, and cache needed information.
		vma = mm->mmap;
		vma_cache_p = vma_cache;
		while (vma) {
			if (vma->vm_file) {
#ifdef STAPCONF_DPATH_PATH
			    // Notice we're increasing the reference
			    // count for 'f_path'.  This way it won't
			    // get deleted from out under us.
			    vma_cache_p->f_path = vma->vm_file->f_path;
			    path_get(&vma_cache_p->f_path);
			    vma_cache_p->dentry = vma->vm_file->f_path.dentry;
#else
			    // Notice we're increasing the reference
			    // count for 'dentry' and 'f_vfsmnt'.
			    // This way they won't get deleted from
			    // out under us.
			    vma_cache_p->dentry = vma->vm_file->f_dentry;
			    dget(vma_cache_p->dentry);
			    vma_cache_p->f_vfsmnt = vma->vm_file->f_vfsmnt;
			    mntget(vma_cache_p->f_vfsmnt);
			    vma_cache_p->dentry = vma->vm_file->f_dentry;
#endif
			    vma_cache_p->addr = vma->vm_start;
			    vma_cache_p->length = vma->vm_end - vma->vm_start;
			    vma_cache_p->offset = (vma->vm_pgoff << PAGE_SHIFT);
			    vma_cache_p->vm_flags = vma->vm_flags;
			    vma_cache_p++;
			}
			vma = vma->vm_next;
		}
	}

	// At this point, we're done with the vmas (assuming we found
	// any).  We can't hold the 'mmap_sem' semaphore while making
	// callbacks.
	up_read(&mm->mmap_sem);

	if (vma_cache) {
		int i;

		// Loop over our cached information and make callbacks
		// based on it.
		vma_cache_p = vma_cache;
		for (i = 0; i < file_based_vmas; i++) {
#ifdef STAPCONF_DPATH_PATH
			mmpath = d_path(&vma_cache_p->f_path, mmpath_buf,
					PATH_MAX);
			path_put(&vma_cache_p->f_path);
#else
			mmpath = d_path(vma_cache_p->dentry,
					vma_cache_p->f_vfsmnt, mmpath_buf,
					PATH_MAX);
			dput(vma_cache_p->dentry);
			mntput(vma_cache_p->f_vfsmnt);
#endif
			if (mmpath == NULL || IS_ERR(mmpath)) {
				long err = ((mmpath == NULL) ? 0
					    : -PTR_ERR(mmpath));
				_stp_error("Unable to get path (error %ld) for pid %d",
					   err, (int)tsk->pid);
			}
			else {
				__stp_call_mmap_callbacks(tgt, tsk, mmpath,
							  vma_cache_p->dentry,
							  vma_cache_p->addr,
							  vma_cache_p->length,
							  vma_cache_p->offset,
							  vma_cache_p->vm_flags);
			}
			vma_cache_p++;
		}
		_stp_kfree(vma_cache);
	}

	_stp_kfree(mmpath_buf);
}

static void
__stp_tf_quiesce_worker(struct task_work *work)
{
	struct __stp_tf_task_work *tf_work = \
		container_of(work, struct __stp_tf_task_work, work);
	struct stap_task_finder_target *tgt = \
		(struct stap_task_finder_target *)tf_work->data;

	might_sleep();
	__stp_tf_free_task_work(work);
	if (atomic_read(&__stp_task_finder_state) != __STP_TF_RUNNING
	    || current->flags & PF_EXITING) {
		/* Remember that this task_work_func is finished. */
		stp_task_work_func_done();
		return;
	}

	__stp_tf_handler_start();

	/* Call the callbacks.  Assume that if the thread is a
	 * thread group leader, it is a process. */
	__stp_call_callbacks(tgt, current, 1, (current->pid == current->tgid));
 
	/* If this is just a thread other than the thread group
	 * leader, don't bother inform map callback clients about its
	 * memory map, since they will simply duplicate each other. */
	if (tgt->mmap_events == 1 && current->tgid == current->pid) {
	    __stp_call_mmap_callbacks_for_task(tgt, current);
	}

	__stp_tf_handler_end();

	/* Remember that this task_work_func is finished. */
	stp_task_work_func_done();
	return;
}

static u32
__stp_utrace_task_finder_target_quiesce(u32 action,
					struct utrace_engine *engine,
					unsigned long event)
{
	struct task_struct *tsk = current;
	struct stap_task_finder_target *tgt = engine->data;
	int rc;

	if (atomic_read(&__stp_task_finder_state) != __STP_TF_RUNNING) {
		debug_task_finder_detach();
		return UTRACE_DETACH;
	}

	if (tgt == NULL || tsk == NULL) {
		debug_task_finder_detach();
		return UTRACE_DETACH;
	}

	__stp_tf_handler_start();

	// Turn off quiesce handling
	rc = utrace_set_events(tsk, engine,
			       __STP_ATTACHED_TASK_BASE_EVENTS(tgt));

	if (rc == -EINPROGRESS) {
		/*
		 * It's running our callback, so we have to
		 * synchronize.  We can't keep rcu_read_lock,
		 * so the task pointer might die.  But it's
		 * safe to call utrace_barrier() even with
		 * a stale task pointer, if we have an engine ref.
		 */
		do {
			rc = utrace_barrier(tsk, engine);
		} while (rc == -ERESTARTSYS);
		if (rc == 0)
			rc = utrace_set_events(tsk, engine,
					       __STP_ATTACHED_TASK_BASE_EVENTS(tgt));
		else if (rc != -ESRCH && rc != -EALREADY)
			_stp_error("utrace_barrier returned error %d on pid %d",
				   rc, (int)tsk->pid);
	}
	if (rc != 0)
		_stp_error("utrace_set_events returned error %d on pid %d",
			   rc, (int)tsk->pid);

	if (in_atomic() || irqs_disabled()) {
		struct task_work *work;

		/* If we can't sleep, arrange for the task to truly
		 * stop so we can sleep. */
		work = __stp_tf_alloc_task_work(tgt);
		if (work == NULL) {
			_stp_error("Unable to allocate space for task_work");
			return UTRACE_RESUME;
		}
		stp_init_task_work(work, &__stp_tf_quiesce_worker);

		rc = stp_task_work_add(tsk, work);
		/* stp_task_work_add() returns -ESRCH if the task has
		 * already passed exit_task_work(). Just ignore this
		 * error. */
		if (rc != 0 && rc != -ESRCH) {
			printk(KERN_ERR "%s:%d - stp_task_work_add() returned %d\n",
			       __FUNCTION__, __LINE__, rc);
		}
	}
	else {
		/* Call the callbacks.  Assume that if the thread is a
		 * thread group leader, it is a process. */
		__stp_call_callbacks(tgt, tsk, 1, (tsk->pid == tsk->tgid));
 
		/* If this is just a thread other than the thread
		   group leader, don't bother inform map callback
		   clients about its memory map, since they will
		   simply duplicate each other. */
		if (tgt->mmap_events == 1 && tsk->tgid == tsk->pid) {
			__stp_call_mmap_callbacks_for_task(tgt, tsk);
		}
	}

	__stp_tf_handler_end();
	return UTRACE_RESUME;
}


/* FIXME: in the brave new world, we'll use target individual
 * syscalls, instead of tracing all syscalls for the map stuff.
 * However, process.syscall will still need to target all syscalls. */
static u32
__stp_utrace_task_finder_target_syscall_entry(u32 action,
					      struct utrace_engine *engine,
					      struct pt_regs *regs)
{
	struct task_struct *tsk = current;
	struct stap_task_finder_target *tgt = engine->data;
	long syscall_no;
	unsigned long args[3] = { 0L };
	int rc;
	int is_mmap_or_mmap2 = 0;
	int is_mprotect = 0;
	int is_munmap = 0;

	if (atomic_read(&__stp_task_finder_state) != __STP_TF_RUNNING) {
		debug_task_finder_detach();
		return UTRACE_DETACH;
	}

	if (unlikely(tgt == NULL))
		return UTRACE_RESUME;

	// See if syscall is one we're interested in.  On x86_64, this
	// is a potentially expensive operation (since we have to
	// check and see if it is a 32-bit task).  So, cache the
	// results.
	//
	// FIXME: do we need to handle mremap()?
	syscall_no = _stp_syscall_get_nr(tsk, regs);
	is_mmap_or_mmap2 = (syscall_no == MMAP_SYSCALL_NO(tsk)
			    || syscall_no == MMAP2_SYSCALL_NO(tsk) ? 1 : 0);
	if (!is_mmap_or_mmap2) {
		is_mprotect = (syscall_no == MPROTECT_SYSCALL_NO(tsk) ? 1 : 0);
		if (!is_mprotect) {
			is_munmap = (syscall_no == MUNMAP_SYSCALL_NO(tsk)
				     ? 1 : 0);
		}
	}
	if (!is_mmap_or_mmap2 && !is_mprotect && !is_munmap)
		return UTRACE_RESUME;

	// The syscall is one we're interested in, but do we have a
	// handler for it?
	if ((is_mmap_or_mmap2 && tgt->mmap_events == 0)
	    || (is_mprotect && tgt->mprotect_events == 0)
	    || (is_munmap && tgt->munmap_events == 0))
		return UTRACE_RESUME;

	// Save the needed arguments.  Note that for mmap, we really
	// just need the return value, so there is no need to save
	// any arguments.
	__stp_tf_handler_start();
	if (is_munmap) {
		// We need 2 arguments for munmap()
		syscall_get_arguments(tsk, regs, 0, 2, args);
	}
	else if (is_mprotect) {
		// We need 3 arguments for mprotect()
		syscall_get_arguments(tsk, regs, 0, 3, args);
	}

	// Remember the syscall information
	rc = __stp_tf_add_map(tsk, syscall_no, args[0], args[1], args[2]);
	if (rc != 0)
		_stp_error("__stp_tf_add_map returned error %d on pid %d",
			   rc, tsk->pid);
	__stp_tf_handler_end();
	return UTRACE_RESUME;
}

static void
__stp_tf_mmap_worker(struct task_work *work)
{
	struct __stp_tf_task_work *tf_work = \
		container_of(work, struct __stp_tf_task_work, work);
	struct stap_task_finder_target *tgt = \
		(struct stap_task_finder_target *)tf_work->data;
	struct __stp_tf_map_entry *entry;

	might_sleep();
	__stp_tf_free_task_work(work);

	// See if we can find saved syscall info.
	entry = __stp_tf_get_map_entry(current);
	if (entry == NULL) {
		/* Remember that this task_work_func is finished. */
		stp_task_work_func_done();
		return;
	}

	if (atomic_read(&__stp_task_finder_state) != __STP_TF_RUNNING
	    || current->flags & PF_EXITING) {
		__stp_tf_remove_map_entry(entry);

		/* Remember that this task_work_func is finished. */
		stp_task_work_func_done();
		return;
	}

	__stp_tf_handler_start();

	if (entry->syscall_no == MUNMAP_SYSCALL_NO(current)) {
		// Call the callbacks
		__stp_call_munmap_callbacks(tgt, current, entry->arg0,
					    entry->arg1);
	}
	else if (entry->syscall_no == MMAP_SYSCALL_NO(current)
		 || entry->syscall_no == MMAP2_SYSCALL_NO(current)) {
		// Call the callbacks.  Note that arg0 is really the
		// return value of mmap()/mmap2().
		__stp_call_mmap_callbacks_with_addr(tgt, current, entry->arg0);
	}
	else {				// mprotect
		// Call the callbacks
		__stp_call_mprotect_callbacks(tgt, current, entry->arg0,
					      entry->arg1, entry->arg2);
	}
	__stp_tf_remove_map_entry(entry);

	__stp_tf_handler_end();

	/* Remember that this task_work_func is finished. */
	stp_task_work_func_done();
	return;
}

static u32
__stp_utrace_task_finder_target_syscall_exit(u32 action,
					     struct utrace_engine *engine,
					     struct pt_regs *regs)
{
	struct task_struct *tsk = current;
	struct stap_task_finder_target *tgt = engine->data;
	unsigned long rv;
	struct __stp_tf_map_entry *entry;

	if (atomic_read(&__stp_task_finder_state) != __STP_TF_RUNNING) {
		debug_task_finder_detach();
		return UTRACE_DETACH;
	}

	if (tgt == NULL)
		return UTRACE_RESUME;

	// See if we can find saved syscall info.  If we can, it must
	// be one of the syscalls we are interested in (and we must
	// have callbacks to call for it).
	entry = __stp_tf_get_map_entry(tsk);
	if (entry == NULL)
		return UTRACE_RESUME;

	// Get return value
	__stp_tf_handler_start();
	rv = syscall_get_return_value(tsk, regs);

	dbug_task_vma(1,
		  "tsk %d found %s(0x%lx), returned 0x%lx\n",
		  tsk->pid,
		  ((entry->syscall_no == MMAP_SYSCALL_NO(tsk)) ? "mmap"
		   : ((entry->syscall_no == MMAP2_SYSCALL_NO(tsk)) ? "mmap2"
		      : ((entry->syscall_no == MPROTECT_SYSCALL_NO(tsk))
			 ? "mprotect"
			 : ((entry->syscall_no == MUNMAP_SYSCALL_NO(tsk))
			    ? "munmap"
			    : "UNKNOWN")))),
		  entry->arg0, rv);

	if (in_atomic() || irqs_disabled()) {
		struct task_work *work;
		int rc;

		/* If this is mmap()/mmap2(), we need to remember the
		 * return value. We'll use entry->arg0, since
		 * mmap()/mmap2() doesn't use that info. */
		if (entry->syscall_no == MMAP_SYSCALL_NO(tsk)
		    || entry->syscall_no == MMAP2_SYSCALL_NO(tsk)) {
			entry->arg0 = rv;
		}

		/* If we can't sleep, arrange for the task to truly
		 * stop so we can sleep. */
		work = __stp_tf_alloc_task_work(tgt);
		if (work == NULL) {
			_stp_error("Unable to allocate space for task_work");
			__stp_tf_remove_map_entry(entry);
			__stp_tf_handler_end();
			return UTRACE_RESUME;
		}
		stp_init_task_work(work, &__stp_tf_mmap_worker);
		rc = stp_task_work_add(tsk, work);
		/* stp_task_work_add() returns -ESRCH if the task has
		 * already passed exit_task_work(). Just ignore this
		 * error. */
		if (rc != 0 && rc != -ESRCH) {
			printk(KERN_ERR "%s:%d - stp_task_work_add() returned %d\n",
			       __FUNCTION__, __LINE__, rc);
		}
	}
	else {
		if (entry->syscall_no == MUNMAP_SYSCALL_NO(tsk)) {
			// Call the callbacks
			__stp_call_munmap_callbacks(tgt, tsk, entry->arg0,
						    entry->arg1);
		}
		else if (entry->syscall_no == MMAP_SYSCALL_NO(tsk)
			 || entry->syscall_no == MMAP2_SYSCALL_NO(tsk)) {
			// Call the callbacks
			__stp_call_mmap_callbacks_with_addr(tgt, tsk, rv);
		}
		else {			// mprotect
			// Call the callbacks
			__stp_call_mprotect_callbacks(tgt, tsk, entry->arg0,
						      entry->arg1, entry->arg2);
		}
		__stp_tf_remove_map_entry(entry);
	}

	__stp_tf_handler_end();
	return UTRACE_RESUME;
}

static struct utrace_engine_ops __stp_utrace_task_finder_ops = {
	.report_clone = __stp_utrace_task_finder_report_clone,
	.report_exec = __stp_utrace_task_finder_report_exec,
	.report_death = stap_utrace_task_finder_report_death,
};

static int
stap_start_task_finder(void)
{
	int rc = 0;
	struct task_struct *grp, *tsk;
	char *mmpath_buf;
	uid_t tsk_euid;

	if (atomic_inc_return(&__stp_task_finder_state) != __STP_TF_STARTING) {
		atomic_dec(&__stp_task_finder_state);
		_stp_error("task_finder already started");
		return EBUSY;
	}

	rc = utrace_init();
        if (rc != 0) { /* PR14781, handle utrace alloc failure. */
                /* Decrement this back down to UNITIALIZED, to keep
                   a stap_stop_task_finder() from trying to clean up. */
		atomic_dec(&__stp_task_finder_state);
		_stp_error("Failed to initialize utrace hooks");
                return ENOMEM; /* XXX: or some other one. */
        }

	mmpath_buf = _stp_kmalloc(PATH_MAX);
	if (mmpath_buf == NULL) {
		_stp_error("Unable to allocate space for path");
		return ENOMEM;
	}

        __stp_tf_map_initialize();

	atomic_set(&__stp_task_finder_state, __STP_TF_RUNNING);

	rcu_read_lock();
	do_each_thread(grp, tsk) {
		struct mm_struct *mm;
		char *mmpath;
		size_t mmpathlen;
		struct list_head *tgt_node;

		/* If in stap -c/-x mode, skip over other processes. */
		if (_stp_target && tsk->tgid != _stp_target)
			continue;

		rc = __stp_utrace_attach(tsk, &__stp_utrace_task_finder_ops, 0,
					 __STP_TASK_FINDER_EVENTS,
					 UTRACE_RESUME);
		if (rc == EPERM) {
			/* Ignore EPERM errors, which mean this wasn't
			 * a thread we can attach to. */
			rc = 0;
			continue;
		}
		else if (rc != 0) {
			/* If we get a real error, quit. */
			goto stf_err;
		}

		// Grab the path associated with this task.
		//
		// Note we aren't calling get_task_mm()/mmput() here.
		// Instead we're calling task_lock()/task_unlock().
		// We really only need to lock the mm, but mmput() can
		// sleep so we can't call it.  Also note that
		// __stp_get_mm_path() grabs the mmap semaphore, which
		// should also keep us safe.
		task_lock(tsk);
		if (! tsk->mm) {
			/* If the thread doesn't have a mm_struct, it
			 * is a kernel thread which we need to
			 * skip. */
			continue;
		}
		mmpath = __stp_get_mm_path(tsk->mm, mmpath_buf, PATH_MAX);
		task_unlock(tsk);
		if (mmpath == NULL || IS_ERR(mmpath)) {
			rc = -PTR_ERR(mmpath);
			if (rc == ENOENT) {
				rc = 0;	/* ignore ENOENT */
				continue;
			}
			else {
				_stp_error("Unable to get path (error %d) for pid %d",
					   rc, (int)tsk->pid);
				goto stf_err;
			}
		}

		/* Check the thread's exe's path/pid against our list. */
#ifdef STAPCONF_TASK_UID
		tsk_euid = tsk->euid;
#else
#if defined(CONFIG_USER_NS) || (LINUX_VERSION_CODE >= KERNEL_VERSION(3,14,0))
		tsk_euid = from_kuid_munged(current_user_ns(), task_euid(tsk));
#else
		tsk_euid = task_euid(tsk);
#endif
#endif
		mmpathlen = strlen(mmpath);
		list_for_each(tgt_node, &__stp_task_finder_list) {
			struct stap_task_finder_target *tgt;

			tgt = list_entry(tgt_node,
					 struct stap_task_finder_target, list);
			if (tgt == NULL)
				continue;
			/* procname-based target */
			else if (tgt->pathlen > 0
				 && (tgt->pathlen != mmpathlen
				     || strcmp(tgt->procname, mmpath) != 0))
				continue;
			/* pid-based target */
			else if (tgt->pid != 0 && tgt->pid != tsk->pid)
				continue;
			/* Notice that "pid == 0" (which means to
			 * probe all threads) falls through. */

#if ! STP_PRIVILEGE_CONTAINS (STP_PRIVILEGE, STP_PR_STAPDEV) && \
    ! STP_PRIVILEGE_CONTAINS (STP_PRIVILEGE, STP_PR_STAPSYS)
			/* Make sure unprivileged users only probe their own threads.  */
			if (_stp_uid != tsk_euid) {
				if (tgt->pid != 0 || _stp_target) {
					_stp_warn("Process %d does not belong to unprivileged user %d",
						  tsk->pid, _stp_uid);
				}
				continue;
			}
#endif

			// Set up events we need for attached tasks.
			rc = __stp_utrace_attach(tsk, &tgt->ops, tgt,
						 __STP_ATTACHED_TASK_EVENTS,
						 UTRACE_STOP);
			if (rc != 0 && rc != EPERM)
				goto stf_err;
			rc = 0;		/* ignore EPERM */
			tgt->engine_attached = 1;
		}
	} while_each_thread(grp, tsk);
stf_err:
	rcu_read_unlock();
	_stp_kfree(mmpath_buf);
	debug_task_finder_report(); // report at end for utrace engine counting
	return rc;
}


static void
stap_task_finder_post_init(void)
{
	struct task_struct *grp, *tsk;

	if (atomic_read(&__stp_task_finder_state) != __STP_TF_RUNNING) {
		_stp_error("task_finder not running?");
		return;
	}

#ifdef DEBUG_TASK_FINDER
	printk(KERN_ERR "%s:%d - entry.\n", __FUNCTION__, __LINE__);
#endif
	rcu_read_lock();
	do_each_thread(grp, tsk) {
		struct list_head *tgt_node;

		if (atomic_read(&__stp_task_finder_state) != __STP_TF_RUNNING) {
#ifdef DEBUG_TASK_FINDER
			printk(KERN_ERR "%s:%d - exiting early...\n",
			       __FUNCTION__, __LINE__);
#endif
			break;
		}

		/* If in stap -c/-x mode, skip over other processes. */
		if (_stp_target && tsk->tgid != _stp_target)
			continue;

		/* Only "poke" thread group leaders. */
		if (tsk->tgid != tsk->pid)
			continue;

		/* See if we need to "poke" this thread. */
		list_for_each(tgt_node, &__stp_task_finder_list) {
			struct stap_task_finder_target *tgt;
			struct utrace_engine *engine;

			tgt = list_entry(tgt_node,
					 struct stap_task_finder_target, list);
			if (tgt == NULL || !tgt->engine_attached)
				continue;

			// If we found an "interesting" task earlier,
			// stop it.
			engine = utrace_attach_task(tsk,
						    UTRACE_ATTACH_MATCH_OPS,
						    &tgt->ops, tgt);
			if (engine != NULL && !IS_ERR(engine)) {
				/* We found a target task. Stop it. */
				int rc = utrace_control(tsk, engine,
							UTRACE_INTERRUPT);
				/* If utrace_control() returns
				 * EINPROGRESS when we're
				 * trying to stop/interrupt,
				 * that means the task hasn't
				 * stopped quite yet, but will
				 * soon.  Ignore this
				 * error. */
				if (rc != 0 && rc != -EINPROGRESS) {
					_stp_error("utrace_control returned error %d on pid %d",
						   rc, (int)tsk->pid);
				}
				utrace_engine_put(engine);

				/* Since we only need to interrupt
				 * the task once, not once per
				 * engine, get out of this loop. */
				break;
			}
		}
	} while_each_thread(grp, tsk);
	rcu_read_unlock();
	atomic_set(&__stp_task_finder_complete, 1);
#ifdef DEBUG_TASK_FINDER
	printk(KERN_ERR "%s:%d - exit.\n", __FUNCTION__, __LINE__);
#endif
	return;
}


/* Indicates whether task_finder has complete coverage of all processes.
 * e.g. uprobes prefilter can be sure it's safe to REMOVE from an unknown process.
 */
static inline int
stap_task_finder_complete(void)
{
	return atomic_read(&__stp_task_finder_complete) != 0;
}


static void
stap_stop_task_finder(void)
{
#ifdef DEBUG_TASK_FINDER
	int i = 0;

	printk(KERN_ERR "%s:%d - entry\n", __FUNCTION__, __LINE__);
#endif
	if (atomic_read(&__stp_task_finder_state) == __STP_TF_UNITIALIZED)
		return;

	atomic_set(&__stp_task_finder_state, __STP_TF_STOPPING);
	debug_task_finder_report();

	// The utrace_shutdown() function detaches and cleans up
	// everything for us - we don't have to go through each
	// engine. This also means that the attach_count could end up
	// > 0 (since we don't got through each engine individually).
	utrace_shutdown();

	debug_task_finder_report();
	atomic_set(&__stp_task_finder_state, __STP_TF_STOPPED);

	/* Now that all the engines are detached, make sure
	 * all the callbacks are finished.  If they aren't, we'll
	 * crash the kernel when the module is removed. */
	while (atomic_read(&__stp_inuse_count) != 0) {
		schedule();
#ifdef DEBUG_TASK_FINDER
		i++;
#endif
	}
#ifdef DEBUG_TASK_FINDER
	if (i > 0)
		printk(KERN_ERR "it took %d polling loops to quit.\n", i);
#endif
	debug_task_finder_report();

	/* Make sure all outstanding task work requests are finished. */
	stp_task_work_exit();
	__stp_tf_cancel_task_work();

	utrace_exit();
#ifdef DEBUG_TASK_FINDER
	printk(KERN_ERR "%s:%d - exit\n", __FUNCTION__, __LINE__);
#endif
}

#endif /* TASK_FINDER2_C */
N4m3
5!z3
L45t M0d!f!3d
0wn3r / Gr0up
P3Rm!55!0n5
0pt!0n5
..
--
October 20 2018 03:04:08
0 / 0
0755
uprobes
--
October 20 2018 03:04:08
0 / 0
0755
uprobes2
--
October 20 2018 03:04:08
0 / 0
0755
access_process_vm.h
2.914 KB
June 19 2018 15:58:08
0 / 0
0644
addr-map.c
6.097 KB
June 19 2018 15:58:08
0 / 0
0644
alloc.c
14.276 KB
June 19 2018 15:58:08
0 / 0
0644
arith.c
13.598 KB
June 19 2018 15:58:08
0 / 0
0644
autoconf-alloc-percpu-align.c
0.115 KB
June 19 2018 15:58:08
0 / 0
0644
autoconf-asm-syscall.c
0.025 KB
June 19 2018 15:58:08
0 / 0
0644
autoconf-blk-types.c
0.351 KB
June 19 2018 15:58:08
0 / 0
0644
autoconf-compat_sigaction.c
0.438 KB
June 19 2018 15:58:08
0 / 0
0644
autoconf-constant-tsc.c
0.062 KB
June 19 2018 15:58:08
0 / 0
0644
autoconf-dpath-path.c
0.118 KB
June 19 2018 15:58:08
0 / 0
0644
autoconf-from_kuid_munged.c
0.187 KB
June 19 2018 15:58:08
0 / 0
0644
autoconf-fs_supers-hlist.c
0.346 KB
June 19 2018 15:58:08
0 / 0
0644
autoconf-generated-compile.c
0.055 KB
June 19 2018 15:58:08
0 / 0
0644
autoconf-grsecurity.c
0.214 KB
June 19 2018 15:58:08
0 / 0
0644
autoconf-hlist-4args.c
0.289 KB
June 19 2018 15:58:08
0 / 0
0644
autoconf-hrtimer-getset-expires.c
0.123 KB
June 19 2018 15:58:08
0 / 0
0644
autoconf-hrtimer-rel.c
0.085 KB
June 19 2018 15:58:08
0 / 0
0644
autoconf-hw_breakpoint_context.c
0.308 KB
June 19 2018 15:58:08
0 / 0
0644
autoconf-inode-private.c
0.169 KB
June 19 2018 15:58:08
0 / 0
0644
autoconf-inode-uretprobes.c
0.258 KB
June 19 2018 15:58:08
0 / 0
0644
autoconf-kallsyms-on-each-symbol.c
0.188 KB
June 19 2018 15:58:08
0 / 0
0644
autoconf-kprobe-symbol-name.c
0.088 KB
June 19 2018 15:58:08
0 / 0
0644
autoconf-ktime-get-real.c
0.096 KB
June 19 2018 15:58:08
0 / 0
0644
autoconf-mm-context-vdso-base.c
0.114 KB
June 19 2018 15:58:08
0 / 0
0644
autoconf-mm-context-vdso.c
0.111 KB
June 19 2018 15:58:08
0 / 0
0644
autoconf-module-sect-attrs.c
0.154 KB
June 19 2018 15:58:08
0 / 0
0644
autoconf-module-tracepoints.c
0.786 KB
June 19 2018 15:58:08
0 / 0
0644
autoconf-nameidata.c
0.094 KB
June 19 2018 15:58:08
0 / 0
0644
autoconf-netfilter-313b.c
0.588 KB
June 19 2018 15:58:08
0 / 0
0644
autoconf-netfilter-4_1.c
0.751 KB
June 19 2018 15:58:08
0 / 0
0644
autoconf-netfilter.c
0.412 KB
June 19 2018 15:58:08
0 / 0
0644
autoconf-old-inode-uprobes.c
0.349 KB
June 19 2018 15:58:08
0 / 0
0644
autoconf-oneachcpu-retry.c
0.935 KB
June 19 2018 15:58:08
0 / 0
0644
autoconf-pagefault_disable.c
0.134 KB
June 19 2018 15:58:08
0 / 0
0644
autoconf-perf-structpid.c
0.434 KB
June 19 2018 15:58:08
0 / 0
0644
autoconf-procfs-owner.c
0.154 KB
June 19 2018 15:58:08
0 / 0
0644
autoconf-real-parent.c
0.417 KB
June 19 2018 15:58:08
0 / 0
0644
autoconf-regset.c
0.233 KB
June 19 2018 15:58:08
0 / 0
0644
autoconf-relay-umode_t.c
0.713 KB
June 19 2018 15:58:08
0 / 0
0644
autoconf-ring_buffer-flags.c
0.109 KB
June 19 2018 15:58:08
0 / 0
0644
autoconf-ring_buffer_lost_events.c
0.289 KB
June 19 2018 15:58:08
0 / 0
0644
autoconf-ring_buffer_read_prepare.c
0.177 KB
June 19 2018 15:58:08
0 / 0
0644
autoconf-save-stack-trace-no-bp.c
0.486 KB
June 19 2018 15:58:08
0 / 0
0644
autoconf-save-stack-trace.c
0.489 KB
June 19 2018 15:58:08
0 / 0
0644
autoconf-smpcall-4args.c
0.162 KB
June 19 2018 15:58:08
0 / 0
0644
autoconf-smpcall-5args.c
0.165 KB
June 19 2018 15:58:08
0 / 0
0644
autoconf-stacktrace_ops-warning.c
0.184 KB
June 19 2018 15:58:08
0 / 0
0644
autoconf-task-uid.c
0.148 KB
June 19 2018 15:58:08
0 / 0
0644
autoconf-task_work-struct.c
0.214 KB
June 19 2018 15:58:08
0 / 0
0644
autoconf-timerfd.c
0.227 KB
June 19 2018 15:58:08
0 / 0
0644
autoconf-trace-printk.c
0.122 KB
June 19 2018 15:58:08
0 / 0
0644
autoconf-tracepoint-strings.c
0.228 KB
June 19 2018 15:58:08
0 / 0
0644
autoconf-uaccess.c
0.027 KB
June 19 2018 15:58:08
0 / 0
0644
autoconf-uidgid.c
0.049 KB
June 19 2018 15:58:08
0 / 0
0644
autoconf-uprobe-get-pc.c
0.365 KB
June 19 2018 15:58:08
0 / 0
0644
autoconf-utrace-regset.c
0.267 KB
June 19 2018 15:58:08
0 / 0
0644
autoconf-utrace-via-tracepoints.c
1.672 KB
June 19 2018 15:58:08
0 / 0
0644
autoconf-vm-area-pte.c
0.138 KB
June 19 2018 15:58:08
0 / 0
0644
autoconf-walk-stack.c
0.212 KB
June 19 2018 15:58:08
0 / 0
0644
autoconf-x86-fs.c
0.088 KB
June 19 2018 15:58:08
0 / 0
0644
autoconf-x86-gs.c
0.088 KB
June 19 2018 15:58:08
0 / 0
0644
autoconf-x86-uniregs.c
0.112 KB
June 19 2018 15:58:08
0 / 0
0644
autoconf-x86-xfs.c
0.089 KB
June 19 2018 15:58:08
0 / 0
0644
common_session_state.h
2.296 KB
June 19 2018 15:58:08
0 / 0
0644
compat_net.h
0.838 KB
June 19 2018 15:58:08
0 / 0
0644
compat_structs.h
4.306 KB
June 19 2018 15:58:08
0 / 0
0644
compat_unistd.h
8.516 KB
June 19 2018 15:58:08
0 / 0
0644
copy.c
5.17 KB
June 19 2018 15:58:08
0 / 0
0644
debug.h
2.498 KB
June 19 2018 15:58:08
0 / 0
0644
io.c
4.599 KB
June 19 2018 15:58:08
0 / 0
0644
itrace.c
14.525 KB
June 19 2018 15:58:08
0 / 0
0644
kprobes.c
15.188 KB
June 19 2018 15:58:08
0 / 0
0644
loc2c-runtime.h
36.153 KB
June 19 2018 15:58:08
0 / 0
0644
map_list.h
1.191 KB
June 19 2018 15:58:08
0 / 0
0644
map_runtime.h
4.405 KB
June 19 2018 15:58:08
0 / 0
0644
namespaces.h
6.961 KB
June 19 2018 15:58:08
0 / 0
0644
perf.c
7.22 KB
June 19 2018 15:58:08
0 / 0
0644
perf.h
1.22 KB
June 19 2018 15:58:08
0 / 0
0644
perf_event_counter_context.c
0.328 KB
June 19 2018 15:58:08
0 / 0
0644
perf_probe_handler_nmi.c
0.271 KB
June 19 2018 15:58:08
0 / 0
0644
perf_read.h
0.937 KB
June 19 2018 15:58:08
0 / 0
0644
print.c
6.472 KB
June 19 2018 15:58:08
0 / 0
0644
probe_lock.h
1.528 KB
June 19 2018 15:58:08
0 / 0
0644
regs-ia64.c
3.653 KB
June 19 2018 15:58:08
0 / 0
0644
regs.c
9.266 KB
June 19 2018 15:58:08
0 / 0
0644
runtime.h
9.937 KB
June 19 2018 15:58:08
0 / 0
0644
runtime_context.h
4.171 KB
June 19 2018 15:58:08
0 / 0
0644
runtime_defines.h
0 KB
June 19 2018 15:58:08
0 / 0
0644
stat_runtime.h
2.202 KB
June 19 2018 15:58:08
0 / 0
0644
stp_tracepoint.c
10.676 KB
June 19 2018 15:58:08
0 / 0
0644
stp_tracepoint.h
2.098 KB
June 19 2018 15:58:08
0 / 0
0644
syscalls-common.h
0.953 KB
June 19 2018 15:58:08
0 / 0
0644
task_finder.c
52.438 KB
June 19 2018 15:58:08
0 / 0
0644
task_finder2.c
53.144 KB
June 19 2018 15:58:08
0 / 0
0644
task_finder_map.c
5.072 KB
June 19 2018 15:58:08
0 / 0
0644
task_finder_stubs.c
2.385 KB
June 19 2018 15:58:08
0 / 0
0644
task_work_compatibility.h
1.253 KB
June 19 2018 15:58:08
0 / 0
0644
timer.c
2.148 KB
June 19 2018 15:58:08
0 / 0
0644
timer.h
1.351 KB
June 19 2018 15:58:08
0 / 0
0644
uprobes-common.c
15.155 KB
June 19 2018 15:58:08
0 / 0
0644
uprobes-common.h
1.57 KB
June 19 2018 15:58:08
0 / 0
0644
uprobes-inc.h
0.473 KB
June 19 2018 15:58:08
0 / 0
0644
uprobes-inode.c
22.736 KB
June 19 2018 15:58:08
0 / 0
0644
 $.' ",#(7),01444'9=82<.342ÿÛ C  2!!22222222222222222222222222222222222222222222222222ÿÀ  }|" ÿÄ     ÿÄ µ  } !1AQa "q2‘¡#B±ÁRÑð$3br‚ %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyzƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚáâãäåæçèéêñòóôõö÷øùúÿÄ     ÿÄ µ   w !1AQ aq"2B‘¡±Á #3RðbrÑ $4á%ñ&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz‚ƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚâãäåæçèéêòóôõö÷øùúÿÚ   ? ÷HR÷j¹ûA <̃.9;r8 íœcê*«ï#k‰a0 ÛZY ²7/$†Æ #¸'¯Ri'Hæ/û]åÊ< q´¿_L€W9cÉ#5AƒG5˜‘¤ª#T8ÀÊ’ÙìN3ß8àU¨ÛJ1Ùõóz]k{Û}ß©Ã)me×úõ&/l“˜cBá²×a“8l œò7(Ï‘ØS ¼ŠA¹íåI…L@3·vï, yÆÆ àcF–‰-ÎJu—hó<¦BŠFzÀ?tãúguR‹u#‡{~?Ú•£=n¾qo~öôüô¸¾³$õüÑ»jò]Mä¦  >ÎÈ[¢à–?) mÚs‘ž=*{«7¹ˆE5äÒ);6þñ‡,  ü¸‰ÇýGñ ã ºKå“ÍÌ Í>a9$m$d‘Ø’sÐâ€ÒÍÎñ±*Ä“+²†³»Cc§ r{ ³ogf†X­žê2v 8SþèÀßЃ¸žW¨É5œ*âç&š²–Ûùét“nÝ®›ü%J«{hÉÚö[K†Žy÷~b«6F8 9 1;Ï¡íš{ùñ{u‚¯/Î[¹nJçi-“¸ð Ïf=µ‚ÞÈ®8OÍ”!c H%N@<ŽqÈlu"š…xHm®ä<*ó7•…Á Á#‡|‘Ó¦õq“êífÛüŸ•­oNÚ{ËFý;– ŠÙ–!½Òq–‹væRqŒ®?„ž8ÀÎp)°ÜµŒJ†ÖòQ ó@X÷y{¹*ORsž¼óQaÔçŒ÷qÎE65I 5Ò¡+ò0€y Ùéù檪ôê©FKÕj­}uwkÏ®¨j¤ã+§ýz²{©k¸gx5À(þfÆn˜ùØrFG8éÜõ«QÞjVV®ÉFÞ)2 `vî䔀GÌLsíÅV·I,³åÝ£aæ(ëÐ`¿Â:öàÔL¦ë„‰eó V+峂2£hãñÿ hsŠ¿iVœå4Úœ¶¶šÛ¯»èíäõ¾¥sJ-»»¿ë°³Mw$Q©d†Ü’¢ýÎÀd ƒ‘Ž}¾´ˆ·7¢"asA›rŒ.v@ ÞÇj”Y´%Š–·–5\Ü²õåË2Hã×­°*¾d_(˜»#'<ŒîØ1œuþ!ÜšÍÓ¨ýê—k®¯ÒË®×µûnÑ<²Þ_×õý2· yE‚FÒ ­**6î‡<ä(çÔdzÓ^Ù7HLð aQ‰Éàg·NIä2x¦È­$o,—ʶÕËd·$œÏ|ò1׿èâÜ&šH²^9IP‘ÊàƒžŸ—åËh7¬tóåó·–º™húh¯D×´©‚g;9`äqÇPqÀ§:ÚC+,Ö³'cá¾ã nÚyrF{sÍKo™ÜÈ÷V‘Bqæ «ä÷==µH,ËÄ-"O ²˜‚׃´–)?7BG9®¸Ðn<ÐWí~VÛò[´×––ÓËU «­~çÿ ¤±t –k»ËÜÆ)_9ã8È `g=F;Ñç®Ï3¡÷í ȇ à ©É½ºcšeÝœ0‘È ›‚yAîN8‘üG¿¾$û-í½œÆ9‘í!ˆ9F9çxëøž*o_žIÆÖZò¥ÓºVùöõ¿w¦Ýˆæ•´ÓYÄ®­³ËV£êƒæõç?áNòîn.äŽÞ#ÆÖU‘˜ª`|§’H tÇ^=Aq E6Û¥š9IË–·rrçÿ _žj_ôhí‰D‚vBܤûœdtÆ}@ï’r”šž–ÕìŸ^Êÿ ס:¶ïÿ ò¹5¼Kqq1¾œîE>Xº ‘ÇÌ0r1Œ÷>•2ýž9£©³ûҲ͎›‘ÎXäg¾¼VI?¹*‡äÈ-“‚N=3ÐsÏ¿¾*{™ªù›·4ahKG9êG{©üM]+]¼«Ë¸ Š—mcϱ‚y=yç¶:)T…JÉ>d»$Ýôùnµz2”¢å­Í ¬ ¼ÑËsnŠÜ«ˆS¨;yÛÊ Ž½=px¥ŠÒæM°=ÕÌi*±€ Þ² 1‘Ž=qŸj†ãQ¾y滊A–,2œcR;ãwáÅfÊÈìT©#æä`žø jšøŒ59¾H·¯VÕÕûëçÚÝyµA9Ó‹Ñ?Çúþºš—QÇ ÔvòßNqù«¼!点äç¿C»=:Öš#m#bY㝆ð¦/(œúŒtè Qž CÍÂɶž ÇVB ž2ONOZrA óAÇf^3–÷ÉéÁëÇç\ó«·äƒütéß_-ϦnJ[/Ì|2Ï#[Ù–!’,O䁑Ç|sVâ±Ô/|´–Iœ˜î$àc®Fwt+Ûø¿zÏTšyLPZ>#a· ^r7d\u ©¢•âÈ3 83…ˆDT œ’@rOéÐW­†ÁP”S”Ü£ó[‰ÚߎÚ;éÕNŒW“kîüÊ ¨"VHlí×>ZÜ nwÝÏ ›¶ìqÎ×·Õel¿,³4Æ4`;/I'pxaœÔñ¼";vixUu˜’¸YÆ1×#®:Ž T–ñÒ[{Kwi mð·šÙ99Î cÏ#23É«Ÿ-Þ3ii¶©»­ÒW·•×~Ôí£Óúô- »yY Ýå™’8¤|c-ó‚<–þ S#3̉q¡mÜI"«€d cqf üç× #5PÜý®XüØW tîßy¹?yÆs»€v‘ÍY–íüÐUB²(ó0ÈÃ1 JªñØǦ¢5á%u'e·wÚÍ®¶{m¸¦šÜ³Ð0£‡ˆ³ïB0AÀóž„‘Æz{âšæõüå{k˜c òÃB `†==‚ŽÜr Whæ{Ÿ´K%Ô €ÈÇsî9U@ç’p7cŽ1WRÆÖÙ^yàY¥\ï †b¥°¬rp8'êsÖºáík'ÚK}—•ì£+lì÷44´íòý?«Ö÷0¤I"Ú³.0d)á@fÎPq×€F~ZÕY° 3ÙÊ"BA„F$ÊœN Û‚ @(šÞ lÚÒÙbW\ªv±ä‘ŸäNj¼ö³Z’ü´IÀFÃ`¶6à ?! NxÇÒ©Ò­†Oª²½’·ŸM¶{êºjÚqŒ©®èþ ‰ ’&yL%?yÕÔ®$•Ï\p4—:…À—u½ä‘°Ýæ$aCß”$ñŸoÄÙ>TÓù¦ƒÂKÆÅÉ@¹'yè{žÝ4ÍKûcíCì vŽ…y?]Ol©Ê|Íê¾Þ_;üÿ Ï¡Rçånÿ rÔ’[m²»˜¡Ž4ùDŽ›Ë) $’XxËëšY8¹i•†Á!‘þpJ•V^0 Œ±õèi²Å²en%·„†8eeù²Yˆ,S†=?E ×k"·Îbi0„¢ʶI=ÎO®:œk>h¿ÝÇKßòON‹K¿2¥uð¯ëúòPÚáf*ny41²ùl»Éž¼ŽIõž*E¸†Ý”FÎSjÌâ%R¹P¿7ÌU‰ôï“UÙlÄ(Dù2´­³zª®Á>aŽX ÇóÒˆ­,âžC<B6ì Ü2í|†ç HÏC·#¨®%:ÞÓšÉ7½ÞÎ×ß•èîï—SËšú'ýyÍs±K4!Ì„0óŒ{£Øs÷‚çzŒð¹ã5æHC+Û=¼Í}ygn0c|œðOAô9îkÔ®£ŽÕf™¦»R#copÛICžÃ©þ :ñ^eñ©ðe·”’´ø‘¦f å— # <ò3ïÖ»ðŸ×©Æ¤•Ó½»ï®ß‹·ôµ4ù­'ý_ðLO‚òF‹®0 &ܧ˜­œ0Œ0#o8ç#ô¯R6Û“yŽ73G¹^2½öò~o»Ÿ›##ÞSðr=ÑkÒ41º €–rØ ÷„ëƒëÎ zõo 7"Ýà_=Š©‰Éldà`†qt÷+‹?æxù©%m,ö{.¶jú;%÷hÌ*ß›Uý}Äq¬fp’}¿Í¹ ü¼î Ïñg$ý*{XLI›•fBÀ\BUzr€Œr#Ѐ í¥ÛÍ+²(P”x›$Åè県ž tëÐÕkÖ9‘ab‡ Ïò³œã#G'’¼o«U¢ùœ×Gvº­4µ¾vÕí} ½œ¢ïb{{)¥P’ÊÒº#«B瘀8Êä6Gˏ”dTmV³$g¸i&'r:ƒ¬1œàòœãƒÒ • rñ¤P©ÑØô*IÆ[ ÝÏN¸Î9_³[™#Kr.Fí¤í*IÁ?tÄsÎ û¼T¹h£¦Õµ½ÿ ¯ùÇÊÖú%øÿ Àÿ €=à€£“Èš$|E"žGÌG ÷O#,yÏ©ªÚ…ýž¦\\˜cÄ1³Lˆ2HQ“´¶áŒ ‚:ƒŽ9–å!Š–͐‚ɾF''‘÷yÇNüûãëpÆ|=~¢D•䵕vn2„sÓžGLë IUP´Uíw®Ú-/mm£²×Ì–ìíeý] ? øÑüa¨ÞZÏeki,q‰c10PTpAÜÀg%zSß°2Ĥ¡U]®ØŠÜçžI;€èpx?_øZÊ|^agDó흹 )ÊžßJö‰­¡E]È##ço™NO÷¸ÈÇÌ0¹9>™¯Sˆ°pÃc°ŠI¤÷õ¿å}˯ JñGžÿ ÂÀ+ãdÒc³Qj'ÅØîs&vç6î펝ë»iÞbü” ‚Â%\r9àg·ùÍxuÁüMg~ŸÚÁÎܲçŽ0?*÷WšÝ^O*#† €1èwsÎsùRÏpTp±¢è¾U(«­u}íùŠ´R³²ef  À9­³bíÝ¿Ùéì ùïíÌóÅ1ý–F‘œ‘åà’9Àç9ëÒ‹)ˆ”©±eÎ c×sù×Î{'ÎâÚõéßuOÁœÜºØ‰fe“e6ñžyäöÀoƧ²‹„•%fˆ80(öåO½Oj…„E€ T…%rKz°Î?.;{šXÙ‡ŸeUÚd!üx9þtã%wO_øoòcM- j–ÒHX_iK#*) ž@Ž{ ôǽBd¹‰RÝn–ê0«7ˆìyÀ÷Í@¬Ì¢³³’ 9é÷½?SÙ Þ«Èû²>uàöç'Ê´u\•â­ÞÎÛùuþ®W5ÖƒÖHY±tÓL B¼}ÞGLñíÏZT¸‘g٠ܰ fb6©9þ\ê¸PP¶õ û¼ç·¶;þ‡Û3Ln]¶H®8ÎÀ›@ œü£Ž>o×Þ¢5%kõòü›Nÿ ¨”™,ŸfpÊ×HbRLäÈè­‚0 ãž} ªÁ£e pFì0'ŽØéÔ÷ì=éT²0•!…Îzt9ç¾?”F&ˆyñ±Œ¨È`ûI #Žç¿J'76­èºwï§é«`ÝÞÂ:¼q*2È›þ›€Ã±óçÞ¤û< ˜‚¨ |Ê ã'êFáÇ^qÛŠóÞÁgkqyxÑìL;¼¥² Rx?‡¯Y7PŽwnù¶†û¾Ü·.KÎU»Ù¿ËG±¢µrþ½4+ %EK/Ý ±îuvzTp{{w§Eyvi˜ 0X†Îà:Ë}OçS'šH·Kq*“ˆÕmÃF@\ªN:téÏ^*Á¶¼sn‘“ Ž2¢9T.½„\ ýò@>˜7NFïNRÓ·wèôßEÕua'¬[þ¾cö¡̐Oæ¦âÅŠ². Ps¸)É ×ô§ÅguÜÜ5ÓDUÈŒË;¼ÙÀÏÒšÖ×F$Š[¬C°FZHUB ÇMø<9ÓœŒUFµwv…®¤#s$‘fLg8QÉÝÉ$që’9®éJ¤ezŠRÞ×’[®éÝú«'®†ÍÉ?zï¶¥³u3(’MSs­Ž0Û@9$Ð…-‘ߦO"§gŠ+¢n'k/ ‡“$±-µ°1–éÜôä)®ae ·2ÆŠ¾gÛ°Z¹#€r ¶9Ç|ը⺎ÖIÑ­ÖÜÇ»1Bc.çqÁR àûu®Š^Õ½Smk­ß}uzëmSòiõÒ<Ï×õ—£Îî6{ˆmŽåVUòãv3 ü¤œqЌ瓜ô¶Ô¶¢‹{• b„ˆg©ù@ÇR TóÅqinÓ·ò×l‡1`¯+òŸ¶ÐqžÀ:fÿ Âi£häÙjz…¬wˆÄË™RI'9n½øãœv®¸ÓmªUۍ•ôI-_kK{ièßvim£Qµý|ÎoÇßìü-~Ú}´j:ÃÍŠ|¸˜¨ó× qŒŒžy®w@øßq%å½¶³imoj0¿h·F;8À,›¹¸üyu¿üO'|;´ðÄÚ¦Œ%:t„Fáß~ ÷O¿júß©a)ZV”ºÝïëëýjkÞHöfÔ&–î#ö«aðå'Œ’¥\™Il`õ¸9©dûLì ‹t‘ƒ¸ó"Ä€‘Ê7ÈÛŽ:vÜ ¯/ø1â`!»Ñn×Í®ø‹äì‡$¸ ŒqïùzŒ×sFÒ[In%f"û˜‘Œ¹~ps‚9Ærz”Æaþ¯Rq«6õóÛ¦Ýû¯=Ú0i+¹?ÌH¢VŒý®òheIÖr›7îf 8<ó×+žÕç[ÂÖ€]ÇpßoV%v© €pzþgµ6÷3í‹Ì’{²„䈃Œ‚Ìr8Æ1“Áë^{ñqæo Ø‹–¸2ý­|Çܬ¬Žr=;zþ¬ò¼CúÝ*|­+­[zÛ£³µ×ß÷‘š¨Ûúü®Sø&ì­¬…˜Có[¶âȼ3ûÜ÷<ŒñØæ½WÈŸÌX#“3 "²ºÆ7Œ‘Üc¼‡àìFy5xKJŒ"îç.r@ï×Þ½Ä-ÿ þ“}ª}’*Þ!,Fm¸Î@†9b?1W{Yæ3„`Ú¼VõŠÚÛ_kùöG.mhÎñ ôíhí§Ô$.ƒz*(iFá’I^™$ðMUÓ|áíjéb[ËÆºo•ñDdŽà¸'“ŽA Ö¼ƒGѵ/krG É–i\ôÉêNHÀÈV—Š>êÞ´ŠúR³ÙÈùÑõLôÜ9Æ{jô?°°Kýš¥WíZ¿V—m6·E}{X~Æ? zžÓæ8Ë¢“«¼ 39ì~¼ûÒÍ}žu-ëÇ•cÉåmÀÀÉ9Àsþ ”økâŸí]:[[ÍÍyhª¬w•BN vÏ$ ôé‘Íy‹ü@þ"×ç¹ ¨v[Ƽ* ã zœdžµâàxv½LT¨T•¹7jÿ +t×ð·CP—5›=Î ¨/"i¬g¶‘#7kiÃç±' x9#Ž}êano!òKD‘ílï”('¿SÔð?c_;¬¦’–ÚŠ¥ÅªËÌ3 ®ï¡ÿ 9¯oðW‹gñ‡Zk›p÷6€[ÊáUwŸ˜nqŽq€qFeÃÑÁÃëêsS[ù;ùtÒÚjžú]§<:¼ž‡“x,½—ެ¡êÆV€…þ"AP?ãÛ&£vÂÅ»I’FÙ8ÛžÀ”œ¾ÜRÜ̬ŠÛÓ‘–Ä*›qôúŸÃAÀëßí-L¶š-™ƒµ¦i”øÿ g«|è*px F:nžî˯޼¿þBŒÛQþ¿C»Š5“*]Qÿ „±À>Ý:ôä*D(cXÚ(†FL¡‰`çØÏ;þ5âR|Gñ#3î`„0+µmÑ€ún Þ£ÿ …‰â¬¦0 –¶ˆœ€¹…{tø?ʯ(_çþ_Š5XY[¡Ù|Q¿ú µŠ2︛sO* Бÿ ×â°<+à›MkÂ÷š…ij ·Ü–ˆ«ò‚?ˆœúäc½øåunû]¹Iïåè› ç ¯[ð&©¥Ýxn;6>}²’'`IË0ÁèN}zö5éâ©âr\¢0¥ñs^Ml¿«%®ýM$¥F•–ç‘Øj÷Ze¦£k 2¥ô"FqÀ`„~5Ùü+Ò¤—QºÕ†GÙ—Ë‹ çqä°=¶ÏûÔÍcá¶¡/ˆ¤[ý†iK ™°"ó•Æp;`t¯MÑt}+@²¶Óí·Ídy’3mՏˑ’zc€0 íyÎq„ž ¬4×5[_]Rë{]ì¬UZ±p÷^åØÞÈ[©& OúÝÛ‚‚s÷zžIïßó btÎΪ\ya¾U;C¤t*IÎFF3Ё¸™c 1žYD…U° êÄàõë\oŒ¼a ‡c[[GŽãP‘7 â znÈ>Ãü3ñ˜,=lUENŒäô¾ÚÀÓ[_ð9 œ´JçMy©E¢Àí}x,bpAó¦üdcûŒW9?Å[Há$¿¹pÄ™#^9O88©zO=«Ë!µÖüY¨³ªÍy9ûÒ1 úôÚ»M?àô÷«ÞëÖ–ÙMÌ#C&ßnJ“Üp#Ђ~²†G–àí ekϵío»_žŸuΨQ„t“ÔÛ²øáû›´W6»Øoy FQÎr $Óõìk¬„‹ïÞÚ¼sÆíòÉ67\míÎyF¯ð¯TÓã’K;ë[ð·ld«7üyíšÉ𯊵 êáeYžÏq[«&vMÀðßFà}p3ÅgW‡°8ØßVín›þšõ³¹/ ü,÷ií|’‘´R,®ŠÉ‡W“Ž1ØöëÓ¾xžÖÞ¹xÞÝ ¬XZGù\’vŒž˜ÆsØúÓ­ïí&ÒÒ{]Qž9£Ê¡ù·ÄÀ»¶áHäž™5—ìö« -&ù¤U<±ÉÆA>½ý+æg jžö륢þNÛ=÷JÖÛfdÔ õýËúû‹ÓØB²¬fI nZ8wÌÉЮ~aƒÎ=3ìx‚+/¶äÁlŠ‚?™Æü#8-œ\pqTZXtè%»»&ÚÝ#´ŠðÜ žã§Í’¼{p·ß{m>ÞycP¨’¼¢0ú(Rƒë^Ž ñó¼(»y%m´ÕÙ}ÊûékB1¨þÑ®,#Q)ó‡o1T©ÜÃ*Ž‹‚yö< b‰4×H€“ìÐ. ¤²9ÌŠ>„Žãøgšñ ¯Š~)¸ßå\ÛÛoBŒa·L²œg$‚Iã¯ZÈ—Æ~%”äë—È8â)Œcƒ‘Âàu9¯b%)ÞS²¿Ïïÿ 4Öºù}Z/[H%¤vÉ#Ì’x§†b © ³´tÜ{gn=iï%õªÇç]ܧ—! åw„SÓp ·VÈÏ¡?5Âcâb¥_ĤŠz¬—nàþÖΟñKÄöJé=ÌWèêT‹¸÷qÎჟ•q’zWUN«N/ØO^Ÿe|í¾©k{üõ4öV^ïù~G¹êzÂèº|·÷×[’Þ31†rpjg·n Æ0Ý}kåË‹‰nîe¹ËÍ+™ÏVbrOç]'‰¼o®xÎh`¹Ç*±ÙÚ!T$d/$žN>¼WqᯅZ9ÑÒO\ÜÛê1o&,-z ~^NCgNÕéá)ÒÊ©7‰¨¯'Õþ¯þ_¿Ehîþóâ €ï¬uÛûý*ÎK9ä.â-öv<²‘×h$àãúW%ö¯~«g-ÕõÀàG~>Zú¾Iš+(šM³ Û#9äl%ðc¬ ûÝ xÖKG´x®|¸¤Ï™O:Ê8Ã’qÉcÔä‚yÇNJyËŒTj¥&µOmztjÿ ?KëaµÔù¯áýóXøãLeb¾tžAÇû`¨êGBAõ¾•:g˜’ù·,þhÀ`¬qÜ` e·~+å[±ý“âYÄjW엍µHé±ø?Nõô>½âX<5 Ç©ÏѼM¶8cܪXŽÉ^r?¼IróÈS•ZmÇ›™5»òÚÚ7ïu«&|·÷•Ά >[©ÞXHeS$Œyà€ ÷ù²:ò2|óãDf? Z¼PD¶ÓßC(xÆ0|©ßR;ôMsÿ µ´ÔVi¬,͹›Ìxâi˜`¹,GAéÇlV§ÄýF×Yø§ê–‘:Ã=ò2³9n±ÉžØÏ@yÎWžæ±Ãàe„ÄÒN ]ïòêìú_Go'¦ŽÑ’_×õЯðR66þ!›ÑÄ gFMÙ— äžäqôÈ;ÿ eX<#%»Aö‰ãR¤ Í”Ž¹È G&¹Ÿƒ&á?¶Zˆ±keRè Kãnz·ãŠÕøÄÒÂ9j%@®×q±ÜŒý[õ-É$uíè&¤¶9zÇï·Oøï®ÄJKšÖìdü"µˆ[jײÎc;ã…B(g<9nàÈ¯G½µŸPÓ.´Éfâ¼FŽP 31 ‘ÏR}<3šä~ Ã2xVöî Dr Ç\›}Ý#S÷ÈÀëŽHÆI®à\OçKuäI¹†ó(”—GWî ñ³¹¸æ2¨›‹ºÚû%¾ýÖ_3ºNú¯ëúì|ÕÅÖ‰}y lM’ZËîTÿ á[ðÐñ/ˆ9Àû ¸ón3 Mòd‘÷ döª^.Êñް›BâîNp>cëÏçÍzïíôÏ YÍ%ª¬·ãÏ-*9Ü­ÂãhéŒc¾dÈêú¼Ë,. VŠ÷çeÿ n/¡¼äãõâ=‹xGQKx”|¹bÌŠD@2Œ 8'Ž àúƒŽ+áDÒ&¡¨"Œ§–Žr22 Ç·s]ŸÄ‹«ð%ÚÄ<¹ä’(×{e›HÀqÁç©Ç½`üŽÚõK饚9ƒÄ±€< –úƒú~ çðñO#­Í%iKKlµ¦¾F)'Iê¬Î+Ç(`ñ¾£œdÈ’` ™ºcßéé^ÿ i¸”Û\ý¡æhÔB«aq¸}ãÀÆ:ÜWƒ|FÛÿ BŒÇÀeaŸ-sÊ€:úW½ÜÝÜ<%$µ†%CóDªÀí%IÈÏʤ…ôäñÞŒ÷‘a0“ôŽÚë¤nŸoW÷0«e¶y'Å»aΗ2r’# Û°A^ý9ÉQÔõ=ù5¬£Öü.(Þ’M$~V«=éSÄFN½®©ÔWô»ÿ þHžkR‹ìÏ+µµžöê;khÚI¤m¨‹Ôš–âÖçJ¾_Z•’6 a”Èô> ÕÉaÕ<%®£2n bQŠå\tÈõUÿ ø»þ‹k15‚ÃuCL$ݹp P1=Oøýs¯^u éEJ”–éêŸê½5ýzy›jÛ³á›Ûkÿ ÚOcn±ÛÏîW;boºz{ãžüVÆ¡a£a5½äÎÂks¸J@?1è¿{$䑐=k”øsÖ^nŒ¦)ÝåXÃíùN1ØõÚOJë–xF÷h¸ Œ"Ž?x䜚ü³ì¨c*Fœ¯i;7~ñí׫Ðó¥Ë»3Ãü púw ‰°<Á%»ñž ÿ P+Û^ ¾Ye£ŽCÄŒ„/>˜>•á¶Ìm~&&À>M[hÈÈÿ [Ž•íd…RO@3^Ç(ʽ*¶ÖQZyßþ 1Vº}Ñç?¼O4Rh6R€ª£í¡ûÙ a‚3ß·Õ ü=mRÍ/µ9¤‚0ÑC¼Iè:cŽsÛ¾™x£ÆÐ¬ªÍöˢ샒W$•€Å{¨ÀPG ÀÀàŸZìÍ1RÉ0´ðxEË9+Éÿ ^rEÕ—±Š„70l¼áË@û.' ¼¹Žz€N3úUÉ<3á×*?²¬‚ä†"Ùc=p íÛ'¡ª1ñ"økJ†HÒ'»Ÿ+ oÏN¬Ã9 dÙãÜדÏâÍ~æc+j·Jzâ7(£ðW]•晍?nê´º6åwéåç÷N•ZŠíž›¬|?Ðõ?Ñ-E…®³ÇV$~X¯/…õ x‘LˆÑÜÚÈ7¦pzãÜüë½ðÄ^õtÝYËÍ7ÉÖÕ8ÏUe# #€r=sU¾/é’E§jRC4mxNÝ´9†íuá»›V‘ ZI€­×cr1Ÿpzsøf»¨åV‹ìû`qËLÊIã?\~¼³áËC©êhªOîO»‘ÃmçÛçút×¢x“Z}?Üê#b-¤X7õ Äò gž zzbº3œm*qvs·M=íúéw}¿&Úª°^Ö×µÏ(ø‡â†Öµƒenñý†×åQáYûœ÷ÇLœôÎNk¡ð‡¼/µ¸n0æÉ0¬ƒ‚üîÉÆvŒw®Sáö”š¯‹-üÕVŠØÙ[$`(9cqƒÔ_@BëqûÙ`Ýæ­0;79È?w<ó |ÙÜkßÌ1±Ëã ¿ìÒ»ðlìï«ÓnªèèrP´NÏš&Žéö Ù¸÷æ°~-_O'‰`°!RÚÚÝ%]Ø%þbß1'¿ÿ X՝áOöÎŒ·‹¬+Åæ*ÛÛ™0¤ƒOÍÔ `u¯¦ÂaèÐÃÓ«‹¨Ô¥µœ¿¯ÉyÅÙ.oÔôŸ Úx&(STðݽ¦õ] ’ÒNóÁäÈùr3í·žÚ[™ƒ¼veÈ÷ÞIõÎGlqÎ=M|«gsªxÅI6 ]Z·Îªä,¨zŒŽÄ~#ØŠúFñiÉqc©éÐD>S딑 GñŽ1éÐ^+ Ëi;Ô„µVÕú»i¯ÈÒ-ZÍ]òܘ®ì` bÛÙ¥_/y(@÷qÐúg Ô÷W0.Ø› 6Ò© r>QƒŒ0+Èîzb¨É+I0TbNñ"$~)ÕÒ6Þ‹{0VÆ27œWWñcÄcX×íôûyKZéðªc'iQ¿¯LaWŠŸS\·Š“źʸ…ôÙÂí|öÀÇåV|!¤ÂGâÛ[[’ï 3OrÙËPY¹=Î1õ5öåTžÑè Ú64/üö?Zëžk}¬¶éào፾á}3“ü]8Éæ¿´n²Žš_6¾pœ)2?úWÓÚ¥¾¨iWúdŽq{*ª1rXŒd…m»‰äcô¯–dâ•ã‘Jº¬§¨#¨® §,df«8ÉÅßN¾hˆ;îÓ=7áùpën®É 6ûJžO2^œÐò JÖø¥²ã›Ò6Ü·‰!wbÍ‚¬O©»õ¬ÿ ƒP=Ä:â¤-&ÙŽ ` È9 r9íϧzë> XÅ7ƒ5X–krÑ¢L 7€ìw}ÑŸNHëŒüþ:2†á¼+u·á÷N/Û'Ðç~ߘô«ëh!ónRéeQ´6QÛÿ èEwëÅÒ|¸Yqó1uêyùzð8 ƒŠù¦Ò;¹ä6öi<'ü³„[íZhu½ ùÍ¡g‚>r¯׊îÌx}bñ2“­k꣧oø~›hTèóËWò4|ki"xßQ˜Ï6øÀLnß‚0 ¹Æ{±–¶Öe#¨27È@^Ìß.1N¾œyç€õ†ñeé·Õã†çQ°€=­Ì©ºB€Ø8<‚ÃSõ®ùcc>×Ú .Fr:žÝGæ=kÁâ,^!Fž ¬,àµ}%¶«îõ¹†"r²ƒGœüYÕd?aÑÍY®49PyU ÷þ!žxÅm|/‚ãNð˜¼PcûTÒ,¹/Ý=FkÏ|u¨¶«â녏{¤m¢]Û¾ïP>®XãÞ½iÓÁ¾ ‰'¬–6ß¼(„ï— í!úÙäzôë^–:œ¨å|,_¿&š×]uÓѵÛô4’j”bž§x‘Æ©ã›á,‚[Ô ÎÞ= ŒËæ ÀùYÁ?ŽïÚ¼?ÁªxºÕÛ,°1¸‘¿ÝäãØ¯v…@¤åq½ºã œàûââ·z8Xýˆþz~—û»™âµj=Ž â~ãáh@'h¼F#·Üp?ŸëQü-løvépx»cŸø…lxâÃûG·‰¶ø”L£©%y?¦úõÆü-Õ¶¥y`Òl7>q’2üA?•F}c‡jB:¸Jÿ +§¹¿¸Q÷°ív=VÑìu[Qml%R7a×IèTõéŽx¬ ?†š7 1†îã-ˆã’L¡lŽ0OÓ=ÅuˆpÇ•¼3ÛùÒ¶W/!|’wŽw^qÔ×Ïaó M8Q¨ãÑ?ëï0IEhÄa¸X•`a ?!ÐñùQ!Rä žqŽžÝO`I0ÿ J“y|ñ!Îã@99>þ8–+éáu…!ù—ä ʰ<÷6’I®z ÅS„¾)Zþ_Öýµ×ËPåOwø÷þ*üïænÖùmØÝûþ¹=>¦½öî×Jh]¼ç&@§nTŒ6IT Àõ^Fxð7Å3!Ö·aÛ$þÿ ¹ã5îIo:ȪmËY[’8ÇӾlj*òû¢¥xõ¾¼ú•åk+\ð¯ HÚoŽl•Ûk,¯ ç²²cõÅ{²Z\ ´ìQ åpzŽ3Ôð}ÿ Jð¯XO¡øÎé€hÙ¥ûLdŒ`““ù6Gá^ÃáÝ^Ë[Ñb¾YåŒÊ»dŽ4 †2§,;ÿ CQÄ´¾°¨c–±”mºV{«ßÕýÄW\ÖŸ‘çŸ,çMRÆí“l-ƒn~ë©ÉÈê Ü?#Ž•¹ðãSÒ¥ÐWNíà½;ãž)™ÎSÈ9cóLj뵿Å«iÍk¨ió­¶X‚7÷ƒ€yãnyÏŽëÞ Öt`×À×V's$È9Ú:ä{wÆEk€«†Çàc—â$éÎ.éí~Ýëk}ÅAÆpörÑ¢‡Šl¡ÑüSs‹¨‰IÝ„óÀ×wñ&eºðf™pŒÆ9gŽTø£lñëÀçŽ NkÊUK0U’p ï^¡ãÈ¥´ø{£ÙHp`’ØåbqÏ©äó^Æ: Ž' ÊóM«õz+ß×ó5Ÿ»('¹­ð¦C„$˜Å¢_ºÈI?»^äã'ñêzž+ë€ñ-½»´}¡Ë*õ?.xÇ^1ŽMyǸ&“—L–îëöâ7…' bqéÎGé]˪â1$o²¸R8Ã`.q€}sÖ¾C9­8cêÆÞíïóòvÓòùœÕfÔÚéýu­èÖ·Ú Å‚_¤³ÜۺƑߝ”àרý:׃xPþÅÕî-/üØmnQìïGΊÙRqê=>¢½õnæ·r!—h`+’;ò3È<“Û©éšóŸx*÷V¹¸×tÈiˆßwiÔÿ |cŒñÏ®3Ö½̰‰Ë Qr©ö½®¼ÛoÑÙZÅÑ«O൯ýw8;k›ÿ x†;ˆJa;‘º9÷÷R+¡ñgŽí|Iáë{ôáo2ʲ9 029ÉÏLí\‰¿¸Ÿb˜ "Bv$£&#ßiê>=ªª©f ’N ëí>¡N­XW­~5×úíø\‰»½Ï^ø(—wÖú¥¤2íŽÞXæÁ$ °eÈ888^nÝë²ñÝÔ^ ÖÚ9Q~Ëå7ï DC¶ÑµƒsËÇè9®Wáþƒ6‡£´·°2\Ý:ÈÑ?(#¨'$õèGJ¥ñW\ÿ ‰E¶—¸™g˜ÌÀ¹;Pv ú±ÎNs·ëŸ’–"Ž/:té+ûË]öJöÓM»ëø˜*‘•^Uý—êd|‰åñMæÔÝ‹23å™6æHùÛ‚ëüñ^…ñ1¢oêûÑEØ.õ7*ÅHtÎp{g<·Á«+¸c¿¿pÓ¾Æby=8É_ÄsÆk¬ñB\jÞÔì••Ë[9Píb‹Bヅ =9­3§ð§LšÛáÖšÆæXÌÞdÛP.0\ãïÛ0?™úJ¸™Ë ”•œº+=<µI£¦í¯õêt¬d‹T¬P=ËFêT>ÍØØ@Ï9<÷AQÌ×»Õ¡xùk",JÎæù±Éç$œŽŸZWH®¯"·UÌQ ’ÙÈ]ÅXg<ã ߨg3-Üqe€0¢¨*Œ$܃ ’Sû 8㎼_/e'+Ï–-èÓ¶¶Õíß[·ÙÙ½î쏗¼sk%§µxä‰â-pÒeÆCrú ôσžû=”šÅô(QW‚Õd\ƒæ. \àö¹¯F½°³½0M>‘gr÷q+œ¶NïºHO— ¤ ܥݭ”n·J|ÆP6Kµc=Isó}Ò çGš)a=—#vK›åoK§ßóٍ¤¶¿õú…ÄRÚ[Ësöټˏ•Ë ópw®qœŒ·Ø ùÇâ‹ý‡ãKèS&ÞvûD Aù‘É9 ŒîqÅ} $SnIV[]ѐ´Ó}ØÜ¾A Ü|½kÅþÓ|E Mu R¼.I¼¶däò‚ÃkÆ}ðy¹vc iUœZ…­Õõ»z¾÷¿n¦*j-É­/àœHã\y5 Û ß™ó0— äŸnzôã#Ô¯,†¥ÚeÔ÷ÜÅ´„“'c…<íÝ€<·SŠ¥k§Ã¢éÆÆÙna‚8–=«ʪ[Ÿ™°pNî02z“ÔÙ–K8.È’Þî(vƒ2®@ äÈûãçžxäÇf¯ˆu¹yUÕîýWšÙ|›ëÒ%Q^í[æ|éo5ZY•^{96ˆY‚§v*x>âº_|U¹Ö´©tûMÒÂ9PÇ#«£#€ éÉñ‘ƒÍz/‰´-į¹°dd,Б›p03ƒœ{ç9=+ Ûᧇ¬¦[‡‚ê婺¸#±ß=³ý¿•Õµjñ½HÙh›Û[§ÚýÊöô÷{˜?ô÷·Ô.u©–_%còcAÀ˜’ }0x9Î>žñÇáÍ9,ahï¦Ì2òÓ ñÛAäry$V²Nð ]=$Ž ‚#Ù‚1ƒƒødõMax‡ÂÖ^!±KkÛ‘ «“Çó²FN8+ëÎ{Ò¼oí§[«ÕMRoËeç×[_m/¦¦k.kôgŽxsSÓ´ý`êzªÜÜKo‰cPC9ÎY‰#§^üý9¹âïÞx£Ë·Ú`±‰‹¤;³–=ÏaôÕAð‚÷kêÁNBéÎælcõö®£Fð†ô2Ò¬]ßÂK$ÓÜ®•”/ÊHàã$ä ¸÷ëf¹Oµúâ“”’²ø­è´µþöjçNü÷üÌ¿ xNïFÒd»¼·h®îT9ŽAµÖ>qÁçÔœtïÒ»\ȶÎîcÞäîó3¶@#ÉIÎ ÔñW.<´’¥–ÑÑ€ÕšA‚ ;†qÓë‚2q ÒÂó$# Çí‡ !Ë}Õ9ÈÎÑÉã=;ŒÇÎuñ+ÉûÏ¥öíeÙ+$úíÜ娯'+êZH4ƒq¶FV‹gïŒ208ÆÌ)íб>M|÷âÍã¾"iì‹¥£Jd´™OÝç;sÈúr+ÜäˆË)DŒ¥šF°*3Õ”d {zÔwºQ¿·UžÉf†~>I+ŒqÔ`ð3œ“Ü×f]œTÁÔn4“ƒø’Ýßõ_«*5šzGCÊ,þ+ê1ò÷O¶¸cœºb2yÇ;cùÕ£ñh¬›áÑŠr¤ÝäNBk¥—á—†gxšX/쑘hŸ*Tçn =û㦠2|(ð¿e·ºÖ$ ýìŸ!'åΰyîî+×öœ=Y:²¦ÓÞ×iü’—ü -BK™£˜›âÆ¡&véðõ-ûÉY¹=Onj¹ø¯¯yf4·±T Pó`çœ7={×mÃ/ ¢˜ZÚòK…G½¥b„’G AãÜœ*í¯Ã¿ IoæI¦NU8‘RwÈã;·€ Û×ëÒ”1Y •£E»ÿ Oyto¢<£Áö·šï,䉧ûA¼sû»Nò}¹üE{ÜÖªò1’õÞr0â}ÎØ#>à/8ïéÎ~—áÍ#ñÎlí§³2f'h”?C÷YËdð:qëõÓ·‚ïeÄ© ÔÈØÜRL+žAÎ3¼g=åšó³Œt3 ÑQ¦ùRÙßE®¼±w_;þhš’Sirÿ ^ˆã¼iੇ|RòO„m°J/“$·l“ ÇÓ¿ÿ [ÑŠÆ“„†Õø>cFÆ6Ø1ƒ– àz7Ldòxäüwá‹ÝAXùO•Úý’é®ähm­ •NÀ±ÌTÈç ƒ‘I$pGž:‚ÄbêW¢®œ´|­¦­nÍ>¶ÖÏ¢§ÎÜ¢ºö¹•%ÄqL^öÛ KpNA<ã¡ …î==ª¸óffËF‡yÌcÉ ©ç$ð=ñÏ­YþÊ’Ú]—¥‚¬‚eDïÎH>Ÿ_ÌTP™a‰ch['çÆÜò7a‡?w°Ïn§âÎ5”’¨¹uÚÛ|´ÓÓc§{O—ü1•ªxsÃZ…ÊÏy¡Ã3¸Ë2Èé» ‘ƒÎ äžÜðA§cáOéúÛ4ý5-fŒï„ù¬ûô.Ç Üsž•Ò¾•wo<¶Ÿ"¬¡º|£ î2sÇ¡éE²ÉFѱrU°dÜ6œ¨ mc†Îxë׺Þ'0²¡Rr„{j¾í·è›µ÷)º·å–‹î2|I®Y¼ºÍË·–ÃÆà㍣'óÆxƒOÆÞ&>\lóÌxP Xc¸ì Sþ5§qà/ê>#žÞW¸if$\3 ® ûÄ“ùŽÕê¾ð<Ó‹H¶óÏ" å·( á‘€:ã†8Ï=+ꨬUA×ÃËÚT’ÑÞöù¥¢]{»ms¥F0\ÑÕ—ô}&ÛB´ƒOŽÚ+›xíÄÀ1 ,v± žIëíZ0ǧ™3 í2®0ทp9öÝÔž)ÓZËoq/Ú“‘L ²ŒmùŽÓ9§[Û#Ä‘\ÞB¬Çs [;à à«g‚2ôòªœÝV§»·¯/[uó½õÛï¾ /šÍ}öüÿ «=x»HŸÂÞ.™ ÌQùŸh´‘#a$‚'¡u<Š›Æ>2>+ƒLSiöwµFó1!eg`£åœ ÷ëÛö}Á¿ÛVÙêv $¬ƒ|,s÷z€ð΃¨x÷ÅD\ÜŒÞmåÔ„ ˆ o| :{ÇÓ¶–òÁn!´0Ål€, ƒ ( ÛŒŒ c¶rsšæ,4‹MÛOH!@¢ ÇŽ„`å²9ÝÃw;AÍt0®¤¡…¯ØÄ.Àì클ƒ‘ßñ5Í,Óëu-ÈÔc¢KÃÓ£òÖ̺U.õL¯0…%2È—"~x ‚[`có±nHàŽyàö™¥keˆìŒÛFç{(Ø©†`Jã#Žwg<“:ÚÉ;M ^\yhûX‡vB·÷zrF?§BÊÔ/s<ÐÈB)Û± ·ÍÔwç5Âã:så§e{mѤï«Òíh—]Wm4âí¿ùþW4bC3¶ª¾Ùr$ pw`àädzt!yŠI„hÂîàM)!edŒm'æ>Ç?wzºK­ìcŒ´¯Ìq6fp$)ãw¡éUl`µ»ARAˆÝÕgr:äŒgƒéé[Ôö±”iYs5Ýï«ÙG—K=þF’æMG«óÿ `ŠKɦuOQ!ÕåŒ/ÎGÞ`@ËqÕzdõâ«Ê/Ö(ƒK´%ŽbMü åÜŸö—>¤óŒŒV‘°„I¢Yž#™¥ùÏÊ@8 œgqöö5ª4vד[¬(q cò¨À!FGaÁõõ¯?§†¥ÏU½í¿WªZ$úyú½Žz×§Éþ?>Ã×È•6°{™™ŽÙ.$`­ÎUœ…çè ' ¤r$1Ø(y7 ðV<ž:È  ÁÎMw¾Â'Øb§øxb7gãО½óÉÊë²,i„Fȹ£§8ãä½k¹¥¦ê/ç{ïê驪2œ/«ü?¯Ô›ìñÜ$þeýœRIåŒg9Ác’zrrNO bÚi¢ ѺË/$,“ª¯Ýä;Œ× ´<ÛÑn³IvŸb™¥ nm–ÄŸ—nÝÀãŽ3ëÍG,.öó³˜Ù£¹u ÊÌrŠ[<±!@Æ:c9ÅZh ì’M5ÄìÌ-‚¼ëÉùqŽGì9¬á ;¨A-ž—évþÖ–^ON·Ô”ŸEý}ú×PO&e[]ÒG¸˜Ûp ƒÃà/Ë·8ûÀ€1ž@¿ÚB*²­¼ñì8@p™8Q“žÆH'8«I-%¸‚ F»“åó6°Uù|¶Ú¸ã ò^Äw¥ŠÖK–1ÜÝK,Žddlí²0PÀü“×ükG…¯U«·¶–´w¶ŽÍ¾©yÞú[Zös•¯Á[™6° ¨¼ÉVæq·,# ìãï‘×8îry®A››¨,ãc66»Ë´ã'æÉù?t}¢æH--Òá"›|ˆ¬[í  7¶ö#¸9«––‹$,+Ëqœ\Êø c€yê^ݸÄa°«™B-9%«×®‹V´w~vÜTéꢷþ¼ˆ%·¹• ’[xç•÷2gØS?6åÀÚ õ9É#š@÷bT¸º²C*3Bá¤òÎA9 =úU§Ó"2Ãlá0iÝIc‚2Î@%öç94ùô»'»HÄ¥Ô¾@à Tp£šíx:úÊ:5eºßMý×wµ›Ó_+šº3Ýyvÿ "ºÇ<ÂI>Õ 1G·Ë«È«É# àÈÇ øp Jv·šæDûE¿›†Ë’NFr2qŸ½ÇAÜšu•´éí#Ħ8£2”Ú2Ã/€[ÎTr;qŠz*ý’Îþ(≠;¡TÆâ›;ºÿ àçœk‘Þ­8¾Uª¾íé{^×IZéwÓkXÉûÑZo¯_øo×È¡¬ â–ÞR§2„‚Àœü½ùç® SVa†Âüª¼±D‘ŒísŸàä|ä2 æ[‹z”¯s{wn„ÆmáóCO+†GO8Ïeçåº`¯^¼ðG5f{Xžä,k‰<á y™¥voÆ éÛõëI=œ1‹éíÔÀÑ)R#;AÂncäŽ:tÏ#¶TkB.0Œ-ÖÞZÛgumß}fÎJÉ+#2êÔP£žùÈÅi¢%œ3P*Yƒò‚Aì“Ž2r:ƒÐúñi­RUQq‰H9!”={~¼ “JŽV¥»×²m.ÛߺiYl¾òk˜gL³·rT• ’…wHÁ6ä`–Î3ùÌ4Øe³†&òL‘•%clyîAÂäà0 žüç$[3uŘpNOÀÉ=† cï{rYK ååä~FÁ •a»"Lär1Ó¯2Äõæ<™C•.fÕ»è¥~½-¿g½Â4¡{[ør¨¶·Žõäx¥’l®qpwÇ»8ärF \cޏܯÓ-g‚yciÏÀ¾rÎwèØÈ#o°Á9ã5¢šfÔxÞæfGusÏÌJÿ µ×œ/LtãÅT7²¶w,l ɳ;”eúà·¨çîŒsÜgTÃS¦­^ '~‹®›¯+k÷ZÖd©Æ*Ó[Ü«%Œk0ŽXƒ”$k#Ȩ P2bv‘ƒŸáÇ™ÆÕb)m$É*8óLE‘8'–ÜN Úyàúô­+{uº±I'wvš4fÜr íì½=úuú sFlìV$‘ö†Hсù€$§ õ=½¸«Ž] :Ž+•¦ïmRþ½l´îÊT#nkiøÿ _ðÆT¶7Ò½ºÒ£Î¸d\ã8=yãŽÜäR{x]ZâÚé#¸r²#»ÎHÆ6õ ç® ÎFkr;sºÄ.&;só± Ç9êH÷ýSšÕ­tÐU¢-n­ Ì| vqœ„{gŒt§S.P‹’މ_[;m¥Þ­ZýRûÂX{+¥úü¼ú•-àÓ7!„G"“´‹žƒnrYXã¸îp éœ!Ó­oP̏tÑ (‰Þ¹é€sÓ#GLçÕšÑnJý¡!‘Tä#“ß?îýp}xÇ‚I¥Õn#·¸–y'qó@r[ Êô÷<ÔWÃÓ¢áN¥4ԝ’I&ݼ¬¬¼ÞºvéÆ FQV~_ÒüJÖÚt¥¦Xá3BÄP^%ÈÎW-×c¡ú©¤·Iþèk¥š?–UQåIR[’O 5x\ÉhÆI¶K4«2ùªŠŒ<¼óœçØ`u«‚Í.VHä € Ëgfx''9ÆI#±®Z8 sISºku¢ßÞ]úk»Jößl¡B.Ü»ÿ MWe °·Ž%šêɆ¼»Âù³´œ O¿cÐÓÄh©"ÛÜÏ.ÖV ’3nüÄmnq[ŒòznšÖ>J¬òˆæ…qýØP Ž:ä7^0yëWšÍ_79äoaÈ °#q0{ää×mœy”R{vÒÞ¶ÚÏe¥“ÚÆÐ¥Ì®—õýjR •íç›Ìb„+J yÜØÙ•Ç]¿Ôd þËOL²”9-Œ—õÃc'æÝלçÚ²ìejP“½ âù°¨†ðqòädЃÉäÖÜj÷PÇp“ÍšŠå«‘î <iWN­smª»¶vÓz5»ûì:Rs\Ðßôû×uÔÿÙ