Server IP : 104.21.87.198 / Your IP : 172.69.176.58 Web Server : Apache/2.2.15 (CentOS) System : Linux GA 2.6.32-431.1.2.0.1.el6.x86_64 #1 SMP Fri Dec 13 13:06:13 UTC 2013 x86_64 User : apache ( 48) PHP Version : 5.6.38 Disable Function : NONE MySQL : ON | cURL : ON | WGET : ON | Perl : ON | Python : ON | Sudo : ON | Pkexec : OFF Directory : /usr/src/openssl-1.0.1g/crypto/bn/ |
Upload File : |
| Current File : /usr/src/openssl-1.0.1g/crypto/bn//bn_gf2m.c |
/* crypto/bn/bn_gf2m.c */
/* ====================================================================
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
*
* The Elliptic Curve Public-Key Crypto Library (ECC Code) included
* herein is developed by SUN MICROSYSTEMS, INC., and is contributed
* to the OpenSSL project.
*
* The ECC Code is licensed pursuant to the OpenSSL open source
* license provided below.
*
* In addition, Sun covenants to all licensees who provide a reciprocal
* covenant with respect to their own patents if any, not to sue under
* current and future patent claims necessarily infringed by the making,
* using, practicing, selling, offering for sale and/or otherwise
* disposing of the ECC Code as delivered hereunder (or portions thereof),
* provided that such covenant shall not apply:
* 1) for code that a licensee deletes from the ECC Code;
* 2) separates from the ECC Code; or
* 3) for infringements caused by:
* i) the modification of the ECC Code or
* ii) the combination of the ECC Code with other software or
* devices where such combination causes the infringement.
*
* The software is originally written by Sheueling Chang Shantz and
* Douglas Stebila of Sun Microsystems Laboratories.
*
*/
/* NOTE: This file is licensed pursuant to the OpenSSL license below
* and may be modified; but after modifications, the above covenant
* may no longer apply! In such cases, the corresponding paragraph
* ["In addition, Sun covenants ... causes the infringement."] and
* this note can be edited out; but please keep the Sun copyright
* notice and attribution. */
/* ====================================================================
* Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
#include <assert.h>
#include <limits.h>
#include <stdio.h>
#include "cryptlib.h"
#include "bn_lcl.h"
#ifndef OPENSSL_NO_EC2M
/* Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should fail. */
#define MAX_ITERATIONS 50
static const BN_ULONG SQR_tb[16] =
{ 0, 1, 4, 5, 16, 17, 20, 21,
64, 65, 68, 69, 80, 81, 84, 85 };
/* Platform-specific macros to accelerate squaring. */
#if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
#define SQR1(w) \
SQR_tb[(w) >> 60 & 0xF] << 56 | SQR_tb[(w) >> 56 & 0xF] << 48 | \
SQR_tb[(w) >> 52 & 0xF] << 40 | SQR_tb[(w) >> 48 & 0xF] << 32 | \
SQR_tb[(w) >> 44 & 0xF] << 24 | SQR_tb[(w) >> 40 & 0xF] << 16 | \
SQR_tb[(w) >> 36 & 0xF] << 8 | SQR_tb[(w) >> 32 & 0xF]
#define SQR0(w) \
SQR_tb[(w) >> 28 & 0xF] << 56 | SQR_tb[(w) >> 24 & 0xF] << 48 | \
SQR_tb[(w) >> 20 & 0xF] << 40 | SQR_tb[(w) >> 16 & 0xF] << 32 | \
SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \
SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF]
#endif
#ifdef THIRTY_TWO_BIT
#define SQR1(w) \
SQR_tb[(w) >> 28 & 0xF] << 24 | SQR_tb[(w) >> 24 & 0xF] << 16 | \
SQR_tb[(w) >> 20 & 0xF] << 8 | SQR_tb[(w) >> 16 & 0xF]
#define SQR0(w) \
SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \
SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF]
#endif
#if !defined(OPENSSL_BN_ASM_GF2m)
/* Product of two polynomials a, b each with degree < BN_BITS2 - 1,
* result is a polynomial r with degree < 2 * BN_BITS - 1
* The caller MUST ensure that the variables have the right amount
* of space allocated.
*/
#ifdef THIRTY_TWO_BIT
static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
{
register BN_ULONG h, l, s;
BN_ULONG tab[8], top2b = a >> 30;
register BN_ULONG a1, a2, a4;
a1 = a & (0x3FFFFFFF); a2 = a1 << 1; a4 = a2 << 1;
tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1^a2;
tab[4] = a4; tab[5] = a1^a4; tab[6] = a2^a4; tab[7] = a1^a2^a4;
s = tab[b & 0x7]; l = s;
s = tab[b >> 3 & 0x7]; l ^= s << 3; h = s >> 29;
s = tab[b >> 6 & 0x7]; l ^= s << 6; h ^= s >> 26;
s = tab[b >> 9 & 0x7]; l ^= s << 9; h ^= s >> 23;
s = tab[b >> 12 & 0x7]; l ^= s << 12; h ^= s >> 20;
s = tab[b >> 15 & 0x7]; l ^= s << 15; h ^= s >> 17;
s = tab[b >> 18 & 0x7]; l ^= s << 18; h ^= s >> 14;
s = tab[b >> 21 & 0x7]; l ^= s << 21; h ^= s >> 11;
s = tab[b >> 24 & 0x7]; l ^= s << 24; h ^= s >> 8;
s = tab[b >> 27 & 0x7]; l ^= s << 27; h ^= s >> 5;
s = tab[b >> 30 ]; l ^= s << 30; h ^= s >> 2;
/* compensate for the top two bits of a */
if (top2b & 01) { l ^= b << 30; h ^= b >> 2; }
if (top2b & 02) { l ^= b << 31; h ^= b >> 1; }
*r1 = h; *r0 = l;
}
#endif
#if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
{
register BN_ULONG h, l, s;
BN_ULONG tab[16], top3b = a >> 61;
register BN_ULONG a1, a2, a4, a8;
a1 = a & (0x1FFFFFFFFFFFFFFFULL); a2 = a1 << 1; a4 = a2 << 1; a8 = a4 << 1;
tab[ 0] = 0; tab[ 1] = a1; tab[ 2] = a2; tab[ 3] = a1^a2;
tab[ 4] = a4; tab[ 5] = a1^a4; tab[ 6] = a2^a4; tab[ 7] = a1^a2^a4;
tab[ 8] = a8; tab[ 9] = a1^a8; tab[10] = a2^a8; tab[11] = a1^a2^a8;
tab[12] = a4^a8; tab[13] = a1^a4^a8; tab[14] = a2^a4^a8; tab[15] = a1^a2^a4^a8;
s = tab[b & 0xF]; l = s;
s = tab[b >> 4 & 0xF]; l ^= s << 4; h = s >> 60;
s = tab[b >> 8 & 0xF]; l ^= s << 8; h ^= s >> 56;
s = tab[b >> 12 & 0xF]; l ^= s << 12; h ^= s >> 52;
s = tab[b >> 16 & 0xF]; l ^= s << 16; h ^= s >> 48;
s = tab[b >> 20 & 0xF]; l ^= s << 20; h ^= s >> 44;
s = tab[b >> 24 & 0xF]; l ^= s << 24; h ^= s >> 40;
s = tab[b >> 28 & 0xF]; l ^= s << 28; h ^= s >> 36;
s = tab[b >> 32 & 0xF]; l ^= s << 32; h ^= s >> 32;
s = tab[b >> 36 & 0xF]; l ^= s << 36; h ^= s >> 28;
s = tab[b >> 40 & 0xF]; l ^= s << 40; h ^= s >> 24;
s = tab[b >> 44 & 0xF]; l ^= s << 44; h ^= s >> 20;
s = tab[b >> 48 & 0xF]; l ^= s << 48; h ^= s >> 16;
s = tab[b >> 52 & 0xF]; l ^= s << 52; h ^= s >> 12;
s = tab[b >> 56 & 0xF]; l ^= s << 56; h ^= s >> 8;
s = tab[b >> 60 ]; l ^= s << 60; h ^= s >> 4;
/* compensate for the top three bits of a */
if (top3b & 01) { l ^= b << 61; h ^= b >> 3; }
if (top3b & 02) { l ^= b << 62; h ^= b >> 2; }
if (top3b & 04) { l ^= b << 63; h ^= b >> 1; }
*r1 = h; *r0 = l;
}
#endif
/* Product of two polynomials a, b each with degree < 2 * BN_BITS2 - 1,
* result is a polynomial r with degree < 4 * BN_BITS2 - 1
* The caller MUST ensure that the variables have the right amount
* of space allocated.
*/
static void bn_GF2m_mul_2x2(BN_ULONG *r, const BN_ULONG a1, const BN_ULONG a0, const BN_ULONG b1, const BN_ULONG b0)
{
BN_ULONG m1, m0;
/* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */
bn_GF2m_mul_1x1(r+3, r+2, a1, b1);
bn_GF2m_mul_1x1(r+1, r, a0, b0);
bn_GF2m_mul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1);
/* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */
r[2] ^= m1 ^ r[1] ^ r[3]; /* h0 ^= m1 ^ l1 ^ h1; */
r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */
}
#else
void bn_GF2m_mul_2x2(BN_ULONG *r, BN_ULONG a1, BN_ULONG a0, BN_ULONG b1, BN_ULONG b0);
#endif
/* Add polynomials a and b and store result in r; r could be a or b, a and b
* could be equal; r is the bitwise XOR of a and b.
*/
int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b)
{
int i;
const BIGNUM *at, *bt;
bn_check_top(a);
bn_check_top(b);
if (a->top < b->top) { at = b; bt = a; }
else { at = a; bt = b; }
if(bn_wexpand(r, at->top) == NULL)
return 0;
for (i = 0; i < bt->top; i++)
{
r->d[i] = at->d[i] ^ bt->d[i];
}
for (; i < at->top; i++)
{
r->d[i] = at->d[i];
}
r->top = at->top;
bn_correct_top(r);
return 1;
}
/* Some functions allow for representation of the irreducible polynomials
* as an int[], say p. The irreducible f(t) is then of the form:
* t^p[0] + t^p[1] + ... + t^p[k]
* where m = p[0] > p[1] > ... > p[k] = 0.
*/
/* Performs modular reduction of a and store result in r. r could be a. */
int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[])
{
int j, k;
int n, dN, d0, d1;
BN_ULONG zz, *z;
bn_check_top(a);
if (!p[0])
{
/* reduction mod 1 => return 0 */
BN_zero(r);
return 1;
}
/* Since the algorithm does reduction in the r value, if a != r, copy
* the contents of a into r so we can do reduction in r.
*/
if (a != r)
{
if (!bn_wexpand(r, a->top)) return 0;
for (j = 0; j < a->top; j++)
{
r->d[j] = a->d[j];
}
r->top = a->top;
}
z = r->d;
/* start reduction */
dN = p[0] / BN_BITS2;
for (j = r->top - 1; j > dN;)
{
zz = z[j];
if (z[j] == 0) { j--; continue; }
z[j] = 0;
for (k = 1; p[k] != 0; k++)
{
/* reducing component t^p[k] */
n = p[0] - p[k];
d0 = n % BN_BITS2; d1 = BN_BITS2 - d0;
n /= BN_BITS2;
z[j-n] ^= (zz>>d0);
if (d0) z[j-n-1] ^= (zz<<d1);
}
/* reducing component t^0 */
n = dN;
d0 = p[0] % BN_BITS2;
d1 = BN_BITS2 - d0;
z[j-n] ^= (zz >> d0);
if (d0) z[j-n-1] ^= (zz << d1);
}
/* final round of reduction */
while (j == dN)
{
d0 = p[0] % BN_BITS2;
zz = z[dN] >> d0;
if (zz == 0) break;
d1 = BN_BITS2 - d0;
/* clear up the top d1 bits */
if (d0)
z[dN] = (z[dN] << d1) >> d1;
else
z[dN] = 0;
z[0] ^= zz; /* reduction t^0 component */
for (k = 1; p[k] != 0; k++)
{
BN_ULONG tmp_ulong;
/* reducing component t^p[k]*/
n = p[k] / BN_BITS2;
d0 = p[k] % BN_BITS2;
d1 = BN_BITS2 - d0;
z[n] ^= (zz << d0);
tmp_ulong = zz >> d1;
if (d0 && tmp_ulong)
z[n+1] ^= tmp_ulong;
}
}
bn_correct_top(r);
return 1;
}
/* Performs modular reduction of a by p and store result in r. r could be a.
*
* This function calls down to the BN_GF2m_mod_arr implementation; this wrapper
* function is only provided for convenience; for best performance, use the
* BN_GF2m_mod_arr function.
*/
int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p)
{
int ret = 0;
int arr[6];
bn_check_top(a);
bn_check_top(p);
ret = BN_GF2m_poly2arr(p, arr, sizeof(arr)/sizeof(arr[0]));
if (!ret || ret > (int)(sizeof(arr)/sizeof(arr[0])))
{
BNerr(BN_F_BN_GF2M_MOD,BN_R_INVALID_LENGTH);
return 0;
}
ret = BN_GF2m_mod_arr(r, a, arr);
bn_check_top(r);
return ret;
}
/* Compute the product of two polynomials a and b, reduce modulo p, and store
* the result in r. r could be a or b; a could be b.
*/
int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const int p[], BN_CTX *ctx)
{
int zlen, i, j, k, ret = 0;
BIGNUM *s;
BN_ULONG x1, x0, y1, y0, zz[4];
bn_check_top(a);
bn_check_top(b);
if (a == b)
{
return BN_GF2m_mod_sqr_arr(r, a, p, ctx);
}
BN_CTX_start(ctx);
if ((s = BN_CTX_get(ctx)) == NULL) goto err;
zlen = a->top + b->top + 4;
if (!bn_wexpand(s, zlen)) goto err;
s->top = zlen;
for (i = 0; i < zlen; i++) s->d[i] = 0;
for (j = 0; j < b->top; j += 2)
{
y0 = b->d[j];
y1 = ((j+1) == b->top) ? 0 : b->d[j+1];
for (i = 0; i < a->top; i += 2)
{
x0 = a->d[i];
x1 = ((i+1) == a->top) ? 0 : a->d[i+1];
bn_GF2m_mul_2x2(zz, x1, x0, y1, y0);
for (k = 0; k < 4; k++) s->d[i+j+k] ^= zz[k];
}
}
bn_correct_top(s);
if (BN_GF2m_mod_arr(r, s, p))
ret = 1;
bn_check_top(r);
err:
BN_CTX_end(ctx);
return ret;
}
/* Compute the product of two polynomials a and b, reduce modulo p, and store
* the result in r. r could be a or b; a could equal b.
*
* This function calls down to the BN_GF2m_mod_mul_arr implementation; this wrapper
* function is only provided for convenience; for best performance, use the
* BN_GF2m_mod_mul_arr function.
*/
int BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx)
{
int ret = 0;
const int max = BN_num_bits(p) + 1;
int *arr=NULL;
bn_check_top(a);
bn_check_top(b);
bn_check_top(p);
if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
ret = BN_GF2m_poly2arr(p, arr, max);
if (!ret || ret > max)
{
BNerr(BN_F_BN_GF2M_MOD_MUL,BN_R_INVALID_LENGTH);
goto err;
}
ret = BN_GF2m_mod_mul_arr(r, a, b, arr, ctx);
bn_check_top(r);
err:
if (arr) OPENSSL_free(arr);
return ret;
}
/* Square a, reduce the result mod p, and store it in a. r could be a. */
int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[], BN_CTX *ctx)
{
int i, ret = 0;
BIGNUM *s;
bn_check_top(a);
BN_CTX_start(ctx);
if ((s = BN_CTX_get(ctx)) == NULL) return 0;
if (!bn_wexpand(s, 2 * a->top)) goto err;
for (i = a->top - 1; i >= 0; i--)
{
s->d[2*i+1] = SQR1(a->d[i]);
s->d[2*i ] = SQR0(a->d[i]);
}
s->top = 2 * a->top;
bn_correct_top(s);
if (!BN_GF2m_mod_arr(r, s, p)) goto err;
bn_check_top(r);
ret = 1;
err:
BN_CTX_end(ctx);
return ret;
}
/* Square a, reduce the result mod p, and store it in a. r could be a.
*
* This function calls down to the BN_GF2m_mod_sqr_arr implementation; this wrapper
* function is only provided for convenience; for best performance, use the
* BN_GF2m_mod_sqr_arr function.
*/
int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
{
int ret = 0;
const int max = BN_num_bits(p) + 1;
int *arr=NULL;
bn_check_top(a);
bn_check_top(p);
if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
ret = BN_GF2m_poly2arr(p, arr, max);
if (!ret || ret > max)
{
BNerr(BN_F_BN_GF2M_MOD_SQR,BN_R_INVALID_LENGTH);
goto err;
}
ret = BN_GF2m_mod_sqr_arr(r, a, arr, ctx);
bn_check_top(r);
err:
if (arr) OPENSSL_free(arr);
return ret;
}
/* Invert a, reduce modulo p, and store the result in r. r could be a.
* Uses Modified Almost Inverse Algorithm (Algorithm 10) from
* Hankerson, D., Hernandez, J.L., and Menezes, A. "Software Implementation
* of Elliptic Curve Cryptography Over Binary Fields".
*/
int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
{
BIGNUM *b, *c = NULL, *u = NULL, *v = NULL, *tmp;
int ret = 0;
bn_check_top(a);
bn_check_top(p);
BN_CTX_start(ctx);
if ((b = BN_CTX_get(ctx))==NULL) goto err;
if ((c = BN_CTX_get(ctx))==NULL) goto err;
if ((u = BN_CTX_get(ctx))==NULL) goto err;
if ((v = BN_CTX_get(ctx))==NULL) goto err;
if (!BN_GF2m_mod(u, a, p)) goto err;
if (BN_is_zero(u)) goto err;
if (!BN_copy(v, p)) goto err;
#if 0
if (!BN_one(b)) goto err;
while (1)
{
while (!BN_is_odd(u))
{
if (BN_is_zero(u)) goto err;
if (!BN_rshift1(u, u)) goto err;
if (BN_is_odd(b))
{
if (!BN_GF2m_add(b, b, p)) goto err;
}
if (!BN_rshift1(b, b)) goto err;
}
if (BN_abs_is_word(u, 1)) break;
if (BN_num_bits(u) < BN_num_bits(v))
{
tmp = u; u = v; v = tmp;
tmp = b; b = c; c = tmp;
}
if (!BN_GF2m_add(u, u, v)) goto err;
if (!BN_GF2m_add(b, b, c)) goto err;
}
#else
{
int i, ubits = BN_num_bits(u),
vbits = BN_num_bits(v), /* v is copy of p */
top = p->top;
BN_ULONG *udp,*bdp,*vdp,*cdp;
bn_wexpand(u,top); udp = u->d;
for (i=u->top;i<top;i++) udp[i] = 0;
u->top = top;
bn_wexpand(b,top); bdp = b->d;
bdp[0] = 1;
for (i=1;i<top;i++) bdp[i] = 0;
b->top = top;
bn_wexpand(c,top); cdp = c->d;
for (i=0;i<top;i++) cdp[i] = 0;
c->top = top;
vdp = v->d; /* It pays off to "cache" *->d pointers, because
* it allows optimizer to be more aggressive.
* But we don't have to "cache" p->d, because *p
* is declared 'const'... */
while (1)
{
while (ubits && !(udp[0]&1))
{
BN_ULONG u0,u1,b0,b1,mask;
u0 = udp[0];
b0 = bdp[0];
mask = (BN_ULONG)0-(b0&1);
b0 ^= p->d[0]&mask;
for (i=0;i<top-1;i++)
{
u1 = udp[i+1];
udp[i] = ((u0>>1)|(u1<<(BN_BITS2-1)))&BN_MASK2;
u0 = u1;
b1 = bdp[i+1]^(p->d[i+1]&mask);
bdp[i] = ((b0>>1)|(b1<<(BN_BITS2-1)))&BN_MASK2;
b0 = b1;
}
udp[i] = u0>>1;
bdp[i] = b0>>1;
ubits--;
}
if (ubits<=BN_BITS2 && udp[0]==1) break;
if (ubits<vbits)
{
i = ubits; ubits = vbits; vbits = i;
tmp = u; u = v; v = tmp;
tmp = b; b = c; c = tmp;
udp = vdp; vdp = v->d;
bdp = cdp; cdp = c->d;
}
for(i=0;i<top;i++)
{
udp[i] ^= vdp[i];
bdp[i] ^= cdp[i];
}
if (ubits==vbits)
{
BN_ULONG ul;
int utop = (ubits-1)/BN_BITS2;
while ((ul=udp[utop])==0 && utop) utop--;
ubits = utop*BN_BITS2 + BN_num_bits_word(ul);
}
}
bn_correct_top(b);
}
#endif
if (!BN_copy(r, b)) goto err;
bn_check_top(r);
ret = 1;
err:
#ifdef BN_DEBUG /* BN_CTX_end would complain about the expanded form */
bn_correct_top(c);
bn_correct_top(u);
bn_correct_top(v);
#endif
BN_CTX_end(ctx);
return ret;
}
/* Invert xx, reduce modulo p, and store the result in r. r could be xx.
*
* This function calls down to the BN_GF2m_mod_inv implementation; this wrapper
* function is only provided for convenience; for best performance, use the
* BN_GF2m_mod_inv function.
*/
int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const int p[], BN_CTX *ctx)
{
BIGNUM *field;
int ret = 0;
bn_check_top(xx);
BN_CTX_start(ctx);
if ((field = BN_CTX_get(ctx)) == NULL) goto err;
if (!BN_GF2m_arr2poly(p, field)) goto err;
ret = BN_GF2m_mod_inv(r, xx, field, ctx);
bn_check_top(r);
err:
BN_CTX_end(ctx);
return ret;
}
#ifndef OPENSSL_SUN_GF2M_DIV
/* Divide y by x, reduce modulo p, and store the result in r. r could be x
* or y, x could equal y.
*/
int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p, BN_CTX *ctx)
{
BIGNUM *xinv = NULL;
int ret = 0;
bn_check_top(y);
bn_check_top(x);
bn_check_top(p);
BN_CTX_start(ctx);
xinv = BN_CTX_get(ctx);
if (xinv == NULL) goto err;
if (!BN_GF2m_mod_inv(xinv, x, p, ctx)) goto err;
if (!BN_GF2m_mod_mul(r, y, xinv, p, ctx)) goto err;
bn_check_top(r);
ret = 1;
err:
BN_CTX_end(ctx);
return ret;
}
#else
/* Divide y by x, reduce modulo p, and store the result in r. r could be x
* or y, x could equal y.
* Uses algorithm Modular_Division_GF(2^m) from
* Chang-Shantz, S. "From Euclid's GCD to Montgomery Multiplication to
* the Great Divide".
*/
int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p, BN_CTX *ctx)
{
BIGNUM *a, *b, *u, *v;
int ret = 0;
bn_check_top(y);
bn_check_top(x);
bn_check_top(p);
BN_CTX_start(ctx);
a = BN_CTX_get(ctx);
b = BN_CTX_get(ctx);
u = BN_CTX_get(ctx);
v = BN_CTX_get(ctx);
if (v == NULL) goto err;
/* reduce x and y mod p */
if (!BN_GF2m_mod(u, y, p)) goto err;
if (!BN_GF2m_mod(a, x, p)) goto err;
if (!BN_copy(b, p)) goto err;
while (!BN_is_odd(a))
{
if (!BN_rshift1(a, a)) goto err;
if (BN_is_odd(u)) if (!BN_GF2m_add(u, u, p)) goto err;
if (!BN_rshift1(u, u)) goto err;
}
do
{
if (BN_GF2m_cmp(b, a) > 0)
{
if (!BN_GF2m_add(b, b, a)) goto err;
if (!BN_GF2m_add(v, v, u)) goto err;
do
{
if (!BN_rshift1(b, b)) goto err;
if (BN_is_odd(v)) if (!BN_GF2m_add(v, v, p)) goto err;
if (!BN_rshift1(v, v)) goto err;
} while (!BN_is_odd(b));
}
else if (BN_abs_is_word(a, 1))
break;
else
{
if (!BN_GF2m_add(a, a, b)) goto err;
if (!BN_GF2m_add(u, u, v)) goto err;
do
{
if (!BN_rshift1(a, a)) goto err;
if (BN_is_odd(u)) if (!BN_GF2m_add(u, u, p)) goto err;
if (!BN_rshift1(u, u)) goto err;
} while (!BN_is_odd(a));
}
} while (1);
if (!BN_copy(r, u)) goto err;
bn_check_top(r);
ret = 1;
err:
BN_CTX_end(ctx);
return ret;
}
#endif
/* Divide yy by xx, reduce modulo p, and store the result in r. r could be xx
* or yy, xx could equal yy.
*
* This function calls down to the BN_GF2m_mod_div implementation; this wrapper
* function is only provided for convenience; for best performance, use the
* BN_GF2m_mod_div function.
*/
int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx, const int p[], BN_CTX *ctx)
{
BIGNUM *field;
int ret = 0;
bn_check_top(yy);
bn_check_top(xx);
BN_CTX_start(ctx);
if ((field = BN_CTX_get(ctx)) == NULL) goto err;
if (!BN_GF2m_arr2poly(p, field)) goto err;
ret = BN_GF2m_mod_div(r, yy, xx, field, ctx);
bn_check_top(r);
err:
BN_CTX_end(ctx);
return ret;
}
/* Compute the bth power of a, reduce modulo p, and store
* the result in r. r could be a.
* Uses simple square-and-multiply algorithm A.5.1 from IEEE P1363.
*/
int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const int p[], BN_CTX *ctx)
{
int ret = 0, i, n;
BIGNUM *u;
bn_check_top(a);
bn_check_top(b);
if (BN_is_zero(b))
return(BN_one(r));
if (BN_abs_is_word(b, 1))
return (BN_copy(r, a) != NULL);
BN_CTX_start(ctx);
if ((u = BN_CTX_get(ctx)) == NULL) goto err;
if (!BN_GF2m_mod_arr(u, a, p)) goto err;
n = BN_num_bits(b) - 1;
for (i = n - 1; i >= 0; i--)
{
if (!BN_GF2m_mod_sqr_arr(u, u, p, ctx)) goto err;
if (BN_is_bit_set(b, i))
{
if (!BN_GF2m_mod_mul_arr(u, u, a, p, ctx)) goto err;
}
}
if (!BN_copy(r, u)) goto err;
bn_check_top(r);
ret = 1;
err:
BN_CTX_end(ctx);
return ret;
}
/* Compute the bth power of a, reduce modulo p, and store
* the result in r. r could be a.
*
* This function calls down to the BN_GF2m_mod_exp_arr implementation; this wrapper
* function is only provided for convenience; for best performance, use the
* BN_GF2m_mod_exp_arr function.
*/
int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx)
{
int ret = 0;
const int max = BN_num_bits(p) + 1;
int *arr=NULL;
bn_check_top(a);
bn_check_top(b);
bn_check_top(p);
if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
ret = BN_GF2m_poly2arr(p, arr, max);
if (!ret || ret > max)
{
BNerr(BN_F_BN_GF2M_MOD_EXP,BN_R_INVALID_LENGTH);
goto err;
}
ret = BN_GF2m_mod_exp_arr(r, a, b, arr, ctx);
bn_check_top(r);
err:
if (arr) OPENSSL_free(arr);
return ret;
}
/* Compute the square root of a, reduce modulo p, and store
* the result in r. r could be a.
* Uses exponentiation as in algorithm A.4.1 from IEEE P1363.
*/
int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const int p[], BN_CTX *ctx)
{
int ret = 0;
BIGNUM *u;
bn_check_top(a);
if (!p[0])
{
/* reduction mod 1 => return 0 */
BN_zero(r);
return 1;
}
BN_CTX_start(ctx);
if ((u = BN_CTX_get(ctx)) == NULL) goto err;
if (!BN_set_bit(u, p[0] - 1)) goto err;
ret = BN_GF2m_mod_exp_arr(r, a, u, p, ctx);
bn_check_top(r);
err:
BN_CTX_end(ctx);
return ret;
}
/* Compute the square root of a, reduce modulo p, and store
* the result in r. r could be a.
*
* This function calls down to the BN_GF2m_mod_sqrt_arr implementation; this wrapper
* function is only provided for convenience; for best performance, use the
* BN_GF2m_mod_sqrt_arr function.
*/
int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
{
int ret = 0;
const int max = BN_num_bits(p) + 1;
int *arr=NULL;
bn_check_top(a);
bn_check_top(p);
if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
ret = BN_GF2m_poly2arr(p, arr, max);
if (!ret || ret > max)
{
BNerr(BN_F_BN_GF2M_MOD_SQRT,BN_R_INVALID_LENGTH);
goto err;
}
ret = BN_GF2m_mod_sqrt_arr(r, a, arr, ctx);
bn_check_top(r);
err:
if (arr) OPENSSL_free(arr);
return ret;
}
/* Find r such that r^2 + r = a mod p. r could be a. If no r exists returns 0.
* Uses algorithms A.4.7 and A.4.6 from IEEE P1363.
*/
int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const int p[], BN_CTX *ctx)
{
int ret = 0, count = 0, j;
BIGNUM *a, *z, *rho, *w, *w2, *tmp;
bn_check_top(a_);
if (!p[0])
{
/* reduction mod 1 => return 0 */
BN_zero(r);
return 1;
}
BN_CTX_start(ctx);
a = BN_CTX_get(ctx);
z = BN_CTX_get(ctx);
w = BN_CTX_get(ctx);
if (w == NULL) goto err;
if (!BN_GF2m_mod_arr(a, a_, p)) goto err;
if (BN_is_zero(a))
{
BN_zero(r);
ret = 1;
goto err;
}
if (p[0] & 0x1) /* m is odd */
{
/* compute half-trace of a */
if (!BN_copy(z, a)) goto err;
for (j = 1; j <= (p[0] - 1) / 2; j++)
{
if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
if (!BN_GF2m_add(z, z, a)) goto err;
}
}
else /* m is even */
{
rho = BN_CTX_get(ctx);
w2 = BN_CTX_get(ctx);
tmp = BN_CTX_get(ctx);
if (tmp == NULL) goto err;
do
{
if (!BN_rand(rho, p[0], 0, 0)) goto err;
if (!BN_GF2m_mod_arr(rho, rho, p)) goto err;
BN_zero(z);
if (!BN_copy(w, rho)) goto err;
for (j = 1; j <= p[0] - 1; j++)
{
if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
if (!BN_GF2m_mod_sqr_arr(w2, w, p, ctx)) goto err;
if (!BN_GF2m_mod_mul_arr(tmp, w2, a, p, ctx)) goto err;
if (!BN_GF2m_add(z, z, tmp)) goto err;
if (!BN_GF2m_add(w, w2, rho)) goto err;
}
count++;
} while (BN_is_zero(w) && (count < MAX_ITERATIONS));
if (BN_is_zero(w))
{
BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR,BN_R_TOO_MANY_ITERATIONS);
goto err;
}
}
if (!BN_GF2m_mod_sqr_arr(w, z, p, ctx)) goto err;
if (!BN_GF2m_add(w, z, w)) goto err;
if (BN_GF2m_cmp(w, a))
{
BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR, BN_R_NO_SOLUTION);
goto err;
}
if (!BN_copy(r, z)) goto err;
bn_check_top(r);
ret = 1;
err:
BN_CTX_end(ctx);
return ret;
}
/* Find r such that r^2 + r = a mod p. r could be a. If no r exists returns 0.
*
* This function calls down to the BN_GF2m_mod_solve_quad_arr implementation; this wrapper
* function is only provided for convenience; for best performance, use the
* BN_GF2m_mod_solve_quad_arr function.
*/
int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
{
int ret = 0;
const int max = BN_num_bits(p) + 1;
int *arr=NULL;
bn_check_top(a);
bn_check_top(p);
if ((arr = (int *)OPENSSL_malloc(sizeof(int) *
max)) == NULL) goto err;
ret = BN_GF2m_poly2arr(p, arr, max);
if (!ret || ret > max)
{
BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD,BN_R_INVALID_LENGTH);
goto err;
}
ret = BN_GF2m_mod_solve_quad_arr(r, a, arr, ctx);
bn_check_top(r);
err:
if (arr) OPENSSL_free(arr);
return ret;
}
/* Convert the bit-string representation of a polynomial
* ( \sum_{i=0}^n a_i * x^i) into an array of integers corresponding
* to the bits with non-zero coefficient. Array is terminated with -1.
* Up to max elements of the array will be filled. Return value is total
* number of array elements that would be filled if array was large enough.
*/
int BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max)
{
int i, j, k = 0;
BN_ULONG mask;
if (BN_is_zero(a))
return 0;
for (i = a->top - 1; i >= 0; i--)
{
if (!a->d[i])
/* skip word if a->d[i] == 0 */
continue;
mask = BN_TBIT;
for (j = BN_BITS2 - 1; j >= 0; j--)
{
if (a->d[i] & mask)
{
if (k < max) p[k] = BN_BITS2 * i + j;
k++;
}
mask >>= 1;
}
}
if (k < max) {
p[k] = -1;
k++;
}
return k;
}
/* Convert the coefficient array representation of a polynomial to a
* bit-string. The array must be terminated by -1.
*/
int BN_GF2m_arr2poly(const int p[], BIGNUM *a)
{
int i;
bn_check_top(a);
BN_zero(a);
for (i = 0; p[i] != -1; i++)
{
if (BN_set_bit(a, p[i]) == 0)
return 0;
}
bn_check_top(a);
return 1;
}
#endif
| N4m3 |
5!z3 |
L45t M0d!f!3d |
0wn3r / Gr0up |
P3Rm!55!0n5 |
0pt!0n5 |
| .. |
-- |
December 16 2014 08:29:48 |
0 / 0 |
0755 |
|
| asm |
-- |
March 17 2014 16:14:20 |
0 / 0 |
0755 |
|
| | | | | |
| Makefile |
19.23 KB |
April 07 2014 16:55:28 |
0 / 0 |
0664 |
|
| Makefile.save |
19.23 KB |
April 07 2014 16:55:28 |
0 / 0 |
0664 |
|
| bn.h |
35.702 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| bn.mul |
0.315 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| bn_add.c |
6.703 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| bn_asm.c |
22.658 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| bn_blind.c |
11.198 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| bn_const.c |
20.141 KB |
March 17 2014 16:14:20 |
0 / 0 |
0775 |
|
| bn_ctx.c |
11.532 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| bn_depr.c |
3.937 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| bn_div.c |
12.311 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| bn_err.c |
6.426 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| bn_exp.c |
28.88 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| bn_exp2.c |
9.902 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| bn_gcd.c |
17.075 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| bn_gf2m.c |
28.98 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| bn_kron.c |
4.999 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| bn_lcl.h |
16.753 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| bn_lib.c |
19.082 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| bn_mod.c |
9.495 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| bn_mont.c |
14.346 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| bn_mpi.c |
4.262 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| bn_mul.c |
24.775 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| bn_nist.c |
32.302 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| bn_prime.c |
13.875 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| bn_prime.h |
14.638 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| bn_prime.pl |
4.366 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| bn_print.c |
8.649 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| bn_rand.c |
9.168 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| bn_recp.c |
6.613 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| bn_shift.c |
5.516 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| bn_sqr.c |
7.354 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| bn_sqrt.c |
9.771 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| bn_word.c |
5.864 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| bn_x931p.c |
6.767 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| bnspeed.c |
6.47 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| bntest.c |
38.944 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| divtest.c |
0.853 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| exp.c |
1.079 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| expspeed.c |
9.292 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| exptest.c |
6.284 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| todo |
0.101 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| vms-helper.c |
2.828 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
$.' ",#(7),01444'9=82<.342ÿÛ C
2!!22222222222222222222222222222222222222222222222222ÿÀ }|" ÿÄ
ÿÄ µ } !1AQa "q2‘¡#B±ÁRÑð$3br‚
%&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyzƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚáâãäåæçèéêñòóôõö÷øùúÿÄ
ÿÄ µ w !1AQ aq"2B‘¡±Á #3RðbrÑ
$4á%ñ&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz‚ƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚâãäåæçèéêòóôõö÷øùúÿÚ ? ÷HR÷j¹ûA <̃.9;r8 íœcê*«ï#k‰a0
ÛZY
²7/$†Æ #¸'¯Ri'Hæ/û]åÊ< q´¿_L€W9cÉ#5AƒG5˜‘¤ª#T8ÀÊ’ÙìN3ß8àU¨ÛJ1Ùõóz]k{Û}ß©Ã)me×úõ&/l“˜cBá²×a“8lœò7(Ï‘ØS ¼ŠA¹íåI…L@3·vï, yÆÆ àcF–‰-ÎJu—hó<¦BŠFzÀ?tãúguR‹u#
‡{~?Ú•£=n¾qo~öôüô¸¾³$õüÑ»jò]Mä¦
>ÎÈ[¢à–?) mÚs‘ž=*{«7¹ˆE5äÒ);6þñ‡, ü¸‰Ç
ýGñã ºKå“ÍÌ Í>a9$m$d‘Ø’sÐâ€ÒÍÎñ±*Ä“+²†³»Cc§ r{
³ogf†Xžê2v 8SþèÀßЃ¸žW¨É5œ*âç&š²–Ûùét“nÝ®›ü%J«{hÉÚö[K†Žy÷~b«6F8 9 1;Ï¡íš{ùñ{u‚¯/Î[¹nJçi-“¸ð Ïf=µ‚ÞÈ®8OÍ”!c H%N@<ŽqÈlu"š…xHm®ä<*ó7•…Á
Á#‡|‘Ó¦õq“êífÛüŸ•oNÚ{ËFý;– ŠÙ–!½Òq–‹væRqŒ®?„ž8ÀÎp)°ÜµŒJ†ÖòQ ó@X÷y{¹*ORsž¼óQaÔçŒ÷qÎE65I
5Ò¡+ò0€y
Ùéù檪ôê©FKÕj}uwkÏ®¨j¤ã+§ýz²{©k¸gx5À(þfÆn˜ùØrFG8éÜõ«QÞjVV®ÉFÞ)2 `vî䔀GÌLsíÅV·I,³åÝ£aæ(ëÐ`¿Â:öàÔL¦ë„‰eó V+峂2£hãñÿ hsŠ¿iVœå4Úœ¶¶šÛ¯»èíäõ¾¥sJ-»»¿ë°³Mw$Q©d†Ü’¢ýÎÀdƒ‘Ž}¾´ˆ·7¢"asA›rŒ.v@ ÞÇj”Y´%Š–·–5\ܲõåË2Hã×°*¾d_(˜»#'<ŒîØ1œuþ!ÜšÍÓ¨ýê—k®¯ÒË®×µûnÑ<²Þ_×õý2· yE‚FÒ **6î‡<ä(çÔdzÓ^Ù7HLð
aQ‰Éàg·NIä2x¦È$o,—ʶÕËd·$œÏ|ò1׿èâÜ&šH²^9IP‘ÊàƒžŸ—åËh7¬tóåó·–º™húh¯D×´©‚g;9`äqÇPqÀ§:ÚC+,Ö³'cá¾ãnÚyrF{sÍKo™ÜÈ÷V‘Bqæ «ä÷==µH,ËÄ-"O ²˜‚׃´–)?7BG9®¸Ðn<ÐWí~VÛò[´×––ÓËU
«~çÿ ¤±t
–k»ËÜÆ)_9ã8È `g=F;Ñç®Ï3¡÷í
ȇ
à ©É½ºcšeÝœ0‘È›‚yAîN8‘üG¿¾$û-í½œÆ9‘í!ˆ9F9çxëøž*o_žIÆÖZò¥ÓºVùöõ¿w¦Ýˆæ•´ÓYÄ®³ËV£êƒæõç?áNòîn.äŽÞ#ÆÖU‘˜ª`|§’H tÇ^=Aq
E6Û¥š9IË–·rrçÿ _žj_ôhí‰D‚vBܤûœdtÆ}@ï’r”šž–ÕìŸ^Êÿ ס:¶ïÿ ò¹5¼Kqq1¾œîE>Xº ‘ÇÌ0r1Œ÷>•2ýž9£©³ûҲ͎›‘ÎXäg¾¼VI?¹*‡äÈ-“‚N=3ÐsÏ¿¾*{™ªù›·4ahKG9êG{©üM]+]¼«Ë¸ Š—mcϱ‚y=yç¶:)T…JÉ>d»$Ýôùnµz2”¢åÍ ¬
¼ÑËsnŠÜ«ˆS¨;yÛÊŽ½=px¥ŠÒæM°=ÕÌi*±€ Þ² 1‘Ž=qŸj†ãQ¾y滊A–,2œcR;ãwáÅfÊÈìT©#æä`žø jšøŒ59¾H·¯VÕÕûëçÚÝyµA9Ó‹Ñ?Çúþºš—QÇ
ÔvòßNqù«¼!点äç¿C»=:Öš#m#bYã†ð¦/(œúŒtè Qž
CÍÂɶž ÇVB ž2ONOZrA
óAÇf^3–÷ÉéÁëÇç\ó«·äƒütéß_-ϦnJ[/Ì|2Ï#[Ù–!’,Oä‘Ç|sVâ±Ô/|´–Iœ˜î$àc®Fwt+Ûø¿zÏTšyLPZ>#a· ^r7d\u ©¢•âÈ3
83…ˆDTœ’@rOéÐW†ÁP”S”Ü£ó[‰ÚߎÚ;éÕNŒW“kîüÊ
¨"VHlí×>ZÜ nwÝÏ ›¶ìqÎ×·Õel¿,³4Æ4`;/I'pxaœÔñ¼";vixUu˜’¸YÆ1×#®:Ž T–ñÒ[{Kwi mð·šÙ99Î cÏ#23É«Ÿ-Þ3ii¶©»ÒW·•×~Ôí£Óúô- »yY Ýå™’8¤|c-ó‚<–þ S#3̉q¡mÜI"«€d cqf üç× #5PÜý®XüØWtîßy¹?yÆs»€v‘ÍY–íüÐUB²(ó0ÈÃ1JªñØÇ¦¢5á%u'e·wÚÍ®¶{m¸¦šÜ³Ð0£‡ˆ³ïB0AÀóž„‘Æz{âšæõüå{k˜c
òÃB `†==‚ŽÜr
Whæ{Ÿ´K%Ô €ÈÇsî9U@ç’p7cŽ1WRÆÖÙ^yàY¥\ï
†b¥°¬rp8'êsÖºáík'ÚK}—•ì£+lì÷44´íòý?«Ö÷0¤I"Ú³.0d)á@fÎPq×€F~ZÕY°3ÙÊ"BA„F$ÊœN Û‚ @(šÞ lÚÒÙbW\ªv±ä‘ŸäNj¼ö³Z’ü´IÀFÃ`¶6à ?!
NxÇÒ©Ò†Oª²½’·ŸM¶{êºjÚqŒ©®èþ
‰ ’&yL%?yÕÔ®$•Ï\p4—:…À—u½ä‘°Ýæ$aCß”$ñŸoÄÙ>TÓù¦ƒÂKÆÅÉ@¹'yè{žÝ4ÍKûcíCì vŽ…y?]Ol©Ê|Íê¾Þ_;üÿ Ï¡Rçånÿ rÔ’[m²»˜¡Ž4ùDŽ›Ë) $’XxËëšY8¹i•†Á!‘þpJ•V^0
Œ±õèi²Å²en%·„†8eeù²Yˆ,S†=?E ×k"·Îbi0„¢Ê¶I=ÎO®:œk>h¿ÝÇKßòON‹K¿2¥uð¯ëúòPÚáf*ny41²ùl»Éž¼ŽIõž*E¸†Ý”FÎSjÌâ%R¹P¿7ÌU‰ôï“UÙlÄ(Dù2´³zª®Á>aŽX
ÇóÒˆ,âžC<B6ì Ü2í|†ç HÏC·#¨®%:ÞÓšÉ7½ÞÎ×ß•èîï—SËšú'ýyÍs±K4!Ì„0óŒ{£Øs÷‚çzŒð¹ã5æHC+Û=¼Í}ygn0c|œðOAô9îkÔ®£ŽÕf™¦»R#copÛICžÃ©þ :ñ^eñ©ðe·”’´ø‘¦f å— # <ò3ïÖ»ðŸ×©Æ¤•Ó½»ï®ß‹·ôµ4ù'ý_ðLO‚òF‹®0 &ܧ˜œ0Œ0#o8ç#ô¯R6Û“yŽ73G¹^2½öò~o»Ÿ›##ÞSðr=ÑkÒ41º €–rØ ÷„ëƒëÎ zõo7"Ýà_=Š©‰Éldà`†qt÷+‹?æxù©%m,ö{.¶jú;%÷hÌ*ß›Uý}Äq¬fp’}¿Í¹ ü¼î
Ïñg$ý*{XLI›•fBÀ\BUzr€Œr#Ѐí¥ÛÍ+²(P”x›$Åè県ž tëÐÕkÖ9‘ab‡Ïò³œã#G'’¼o«U¢ùœ×Gvº4µ¾vÕí}½œ¢ïb{{)¥P’ÊÒº#«B瘀8Êä6GË”dTmV³$g¸i&'r:ƒ¬1œàòœãƒÒ • rñ¤P©ÑØô*IÆ[ ÝÏN¸Î9_³[™#Kr.Fí¤í*IÁ?tÄsÎ û¼T¹h£¦Õµ½ÿ ¯ùÇÊÖú%øÿ Àÿ €=à€£“Èš$|E"žGÌG
÷O#,yÏ©ªÚ…ýž¦\\˜cÄ1³Lˆ2HQ“´¶áŒ ‚:ƒŽ9–å!Š–Í‚É¾F''‘÷yÇNüûãëpÆ|=~¢D•䵕vn2„sÓžGLë
IUP´Uíw®Ú-/mm£²×Ì–ìíeý]? øÑüa¨ÞZÏeki,q‰c10PTpAÜÀg%zSß°2Ĥ¡U]®ØŠÜçžI;€èpx?_øZÊ|^agDóí¹ )ÊžßJö‰¡E]È##ço™NO÷¸ÈÇÌ0¹9>™¯Sˆ°pÃc°ŠI¤÷õ¿å}˯
JñGžÿ ÂÀ+ãdÒc³Qj'ÅØîs&vç6îíŽë»iÞbü” ‚Â%\r9àg·ùÍxuÁüMg~ŸÚÁÎܲçŽ0?*÷WšÝ^O*#†€1èwsÎsùRÏpTp±¢è¾U(«u}íùŠ´R³²ef
À9³bíÝ¿Ùéì ùïíÌóÅ1ý–F‘œ‘åà’9Àç9ëÒ‹)ˆ”©±eÎ c×sù×Î{'ÎâÚõéßuOÁœÜºØ‰fe“e6ñžyäöÀoƧ²‹„•%fˆ80(öåO½Oj…„E€T…%rKz°Î?.;{šXÙ‡ŸeUÚd!üx9þtã%wO_øoòcM-
j–ÒHX_iK#*) ž@Ž{ôǽBd¹‰RÝn–ê0«7ˆìyÀ÷Í@¬Ì¢³³’ 9é÷½?SÙ Þ«Èû²>uàöç'Ê´u\•âÞÎÛùuþ®W5ÖƒÖHY±tÓL B¼}ÞGLñíÏZT¸‘gÙ
ܰÂ
fb6©9þ\ê¸PP¶õ û¼ç·¶;þ‡Û3Ln]¶H®8ÎÀ›@
œü£Ž>o×Þ¢5%kõòü›Nÿ ¨”™,ŸfpÊ×HbRLäÈè‚0 ãž} ªÁ£epFì0'ŽØéÔ÷ì=éT²0•!…Îzt9ç¾?”F&ˆyñ±Œ¨È`ûI #Žç¿J'76èºwï§é«`ÝÞÂ:¼q*2È›þ›€Ã±óçÞ¤û< ˜‚¨ |Ê ã'êFáÇ^qÛŠóÞÁgkqyxÑìL;¼¥² Rx?‡¯Y7PŽwnù¶†û¾Ü·.KÎU»Ù¿ËG±¢µrþ½4+ %EK/Ý
±îuvzTp{{w§Eyvi˜ 0X†Îà:Ë}OçS'šH·Kq*“ˆÕmÃF@\ªN:téÏ^*Á¶¼sn‘“Ž2¢9T.½„\ýò@>˜7NFïNRÓ·wèôßEÕua'¬[þ¾cö¡ÌOæ¦âÅŠ². Ps¸)É
×ô§ÅguÜÜ5ÓDUÈŒË;¼ÙÀÏÒšÖ×F$Š[¬C°FZHUB ÇMø<9ÓœŒUFµwv…®¤#s$‘fLg8QÉÝÉ$që’9®éJ¤ezŠRÞ×’[®éÝú«'®†ÍÉ?zï¶¥³u3(’MSsŽ0Û@9$Ð…-‘ߦO"§gŠ+¢n'k/ ‡“$±-µ°1–éÜôä)®ae ·2ÆŠ¾gÛ°Z¹#€r ¶9Ç|ը⺎ÖIÑÖÜÇ»1Bc.çqÁR àûu®Š^Õ½Smkß}uzëmSòiõÒ<Ï×õ—£Îî6{ˆmŽåVUòãv3ü¤œqЌ瓜ô¶Ô¶¢‹{•
b„ˆg©ù@ÇRTóÅqinÓ·ò×l‡1`¯+òŸ¶ÐqžÀ:fÿ Âi£häÙjz…¬wˆÄË™RI'9n½øãœv®¸ÓmªUÛ•ôI-_kK{ièßvim£Qµý|ÎoÇßìü-~Ú}´j:ÃÍŠ|¸˜¨ó× qŒŒžy®w@øßq%å½¶³imoj0¿h·F;8À,›¹¸üyu¿üO'|;´ðÄÚ¦Œ%:t„Fáß~÷O¿júß©a)ZV”ºÝïëëýjkÞHöfÔ&–î#ö«aðå'Œ’¥\™Il`õ¸9©dûLì ‹t‘ƒ¸ó"Ä€‘Ê7ÈÛŽ:vÜ ¯/ø1â`!»Ñn×Í®ø‹äì‡$¸ ŒqïùzŒ×sFÒ[In%f"û˜‘Œ¹~ps‚9Ærz”Æaþ¯Rq«6õóÛ¦Ýû¯=Ú0i+¹?ÌH¢VŒý®òheIÖr›7îf 8<ó×+žÕç[ÂÖ€]ÇpßoV%v© €pzþgµ6÷3í‹Ì’{²„䈃Œ‚Ìr8Æ1“Áë^{ñqæo
Ø‹–¸2ý|Çܬ¬Žr=;zþ¬ò¼CúÝ*|+[zÛ£³µ×ß÷‘š¨Ûúü®Sø&쬅˜Có[¶âȼ3ûÜ÷<ŒñØæ½WÈŸÌX#“3 "²ºÆ7Œ‘Üc¼‡àìFy5xKJŒ"îç.r@ï×Þ½Ä-ÿ þ“}ª}’*Þ!,Fm¸Î@†9b?1W{Yæ3„`Ú¼VõŠÚÛ_kùöG.mhÎñ ôíhí§Ô$.ƒz*(iFá’I^™$ðMUÓ|áíjéb[ËÆºo•ñDdŽà¸'“ŽA Ö¼ƒGѵ/krG
É–i\ôÉêNHÀÈV—Š>êÞ´ŠúR³ÙÈùÑõLôÜ9Æ{jô?°°Kýš¥WíZ¿V—m6·E}{X~Æ?
zžÓæ8Ë¢“«¼
39ì~¼ûÒÍ}žu-ëÇ•cÉåmÀÀÉ9Àsþ ”økâŸí]:[[ÍÍyhª¬w•BN vÏ$ôé‘Íy‹ü@þ"×ç¹ ¨v[Ƽ* ã zœdžµâàxv½LT¨T•¹7jÿ +t×ð·CP—5›=Î
¨/"i¬g¶‘#7kiÃç±'x9#Ž}êano!òKD‘ílï”('¿SÔð?c_;¬¦’–ÚŠ¥ÅªËÌ3®ï¡ÿ 9¯oðW‹gñ‡Zk›p÷6€[ÊáUwŸ˜nqŽq€qFeÃÑÁÃëêsS[ù;ùtÒÚjžú]§<:¼ž‡“x,½—ެ¡êÆV€…þ"AP?ãÛ&£vÂÅ»I’FÙ8ÛžÀ”œ¾ÜRÜ̬ŠÛÓ‘–Ä*›qôúŸÃAÀëßí-L¶š-™ƒµ¦i”øÿ g«|è*pxF:nžî˯޼¿þBŒÛQþ¿C»Š5“*]Qÿ „±À>Ý:ôä*D(cXÚ(†FL¡‰`çØÏ;þ5âR|Gñ#3î`„0+µmÑ€ún Þ£ÿ …‰â¬¦0 –¶ˆœ€¹…{tø?ʯ(_çþ_Š5XY[¡Ù|Q¿ú
µŠ2︛sO* Бÿ ×â°<+à›MkÂ÷š…ij
·Ü–ˆ«ò‚?ˆœúäc½øåunû]¹Iïåè› ç ¯[ð&©¥Ýxn;6>}²’'`IË0ÁèN}zö5éâ©âr\¢0¥ñs^Ml¿«%®ýM$¥F•–ç‘Øj÷Ze¦£k
2¥ô"FqÀ`„~5Ùü+Ò¤—QºÕ†GÙ—Ë‹ çqä°=¶ÏûÔÍcá¶¡/ˆ¤[ý†iK ™°"ó•Æp;`t¯MÑt}+@²¶Óí·Ídy’3mÕË‘’zc€0 íyÎq„ž ¬4×5[_]Rë{]ì¬UZ±p÷^åØÞÈ[©&OúÝÛ‚‚s÷zžIïßó btÎΪ\ya¾U;C¤t*IÎFF3Џ™c
1žYD…U° êÄàõë\oŒ¼a ‡c[[GŽãP‘7 â znÈ>Ãü3ñ˜,=lUENŒäô¾ÚÀÓ[_ð9 œ´JçMy©E¢Àí}x,bpAó¦üdcûŒW9?Å[Há$¿¹pÄ™#^9O88©zO=«Ë!µÖüY¨³ªÍy9ûÒ1 úôÚ»M?àô÷«ÞëÖ–ÙMÌ#C&ßnJ“Üp#Ђ~²†G–àíekϵío»_žŸuΨQ„t“ÔÛ²øáû›´W6»Øoy FQÎr $Óõìk¬„‹ïÞÚ¼sÆíòÉ67\míÎyF¯ð¯TÓã’K;ë[ð·ld«7üyíšÉ𯊵 êáeYžÏq[«&vMÀðßFà}p3ÅgW‡°8ØßVín›þšõ³¹/ ü,÷ií|’‘´R,®ŠÉ‡W“Ž1ØöëÓ¾xžÖÞ¹xÞݬXZGù\’vŒž˜ÆsØúÓïí&ÒÒ{]Qž9£Ê¡ù·ÄÀ»¶áHäž™5—ìö« -&ù¤U<±ÉÆA>½ý+æg
jžö륢þNÛ=÷JÖÛfdÔ õýËúû‹ÓØB²¬fInZ8wÌÉЮ~aƒÎ=3ìx‚+/¶äÁlŠ‚?™Æü#8-œ\pqTZXtè%»»&ÚÝ#´ŠðÜžã§Í’¼{p·ß{m>ÞycP¨’¼¢0ú(Rƒë^Ž ñó¼(»y%m´ÕÙ}ÊûékB1¨þÑ®,#Q)ó‡o1T©ÜÃ*Ž‹‚yö<b‰4×H€“ìÐ.
¤²9ÌŠ>„Žãøgšñ
¯Š~)¸ßå\ÛÛoBŒa·L²œg$‚Iã¯ZÈ—Æ~%”äë—È8â)Œcƒ‘Âàu9¯b%)ÞS²¿Ïïÿ 4Öºù}Z/[H%¤vÉ#Ì’x§†b
© ³´tÜ{gn=iï%õªÇç]ܧ—!åw„SÓp ·VÈÏ¡?5Âcâb¥_ĤŠz¬—nàþÖΟñKÄöJé=ÌWèêT‹¸÷qÎჟ•q’zWUN«N/ØO^Ÿe|í¾©k{üõ4öV^ïù~G¹êzÂèº|·÷×[’Þ31†rpjg·n
Æ0Ý}kåË‹‰nîe¹ËÍ+™ÏVbrOç]'‰¼o®xÎh`¹Ç*±ÙÚ!T$d/$žN>¼WqᯅZ9ÑÒO\ÜÛê1o&,-z ~^NCgNÕéá)ÒÊ©7‰¨¯'Õþ¯þ_¿Ehîþóâ €ï¬uÛûý*ÎK9ä.â-öv<²‘×h$àãúW%ö¯~«g-ÕõÀàG~>Zú¾Iš+(šM³ Û#9äl%ðc¬ ûÝ xÖKG´x®|¸¤Ï™O:Ê8Ã’qÉcÔä‚yÇNJyËŒTj¥&µOmztjÿ ?KëaµÔù¯áýóXøãLeb¾tžAÇû`¨êGBAõ¾•:g˜’ù·,þhÀ`¬qÜ` e·~+å[±ý“âYÄjWì—µHé±ø?Nõô>½âX<5 Ç©ÏѼM¶8cܪXŽÉ^r?¼IróÈS•ZmÇ›™5»òÚÚ7ïu«&|·÷•Ά
>[©ÞXHeS$Œyà€ ÷ù²:ò2|óãDf? Z¼PD¶ÓßC(xÆ0|©ßR;ôMsÿ µ´ÔVi¬,͹›Ìxâi˜`¹,GAéÇlV§ÄýF×Yø§ê–‘:Ã=ò2³9n±ÉžØÏ@yÎWžæ±Ãàe„ÄÒN ]ïòêìú_Go'¦ŽÑ’_×õЯðR66þ!›ÑÄ gFMÙ— äžäqôÈ;ÿ eX<#%»Aö‰ãR¤ Í”Ž¹È G&¹Ÿƒ&á?¶Zˆ±keRè Kãnz·ãŠÕøÄÒÂ9j%@®×q±ÜŒý[õ-É$uíè&¤¶9zÇï·Oøï®ÄJKšÖìdü"µˆ[jײÎc;ã…B(g<9nàȯG½µŸPÓ.´Éfâ¼FŽP
31 ‘ÏR}<3šä~
Ã2xVöî Dr
Ç\›}Ý#S÷ÈÀëŽHÆI®à\OçKuäI¹†ó(”—GWî ñ³¹¸æ2¨›‹ºÚû%¾ýÖ_3ºNú¯ëúì|ÕÅÖ‰}ylM’ZËîTÿ á[ðÐñ/ˆ9Àû
¸ón3 Mòd‘÷ döª^.Êñް›BâîNp>cëÏçÍzïÃôÏ
YÍ%ª¬·ãÏ-*9ÜÂãhéŒc¾dÈêú¼Ë,. VŠ÷çeÿ n/¡¼äãõâ=‹xGQKx”|¹bÌŠD@2Œ 8'Ž àúƒŽ+áDÒ&¡¨"Œ§–Žr22 Ç·s]ŸÄ‹«ð%ÚÄ<¹ä’(×{e›HÀqÁç©Ç½`üŽÚõK饚9ƒÄ±€<–úƒú~ çðñO#Í%iKKlµ¦¾F)'Iê¬Î+Ç(`ñ¾£œdÈ’`™ºcßéé^ÿ i¸”Û\ý¡æhÔB«aq¸}ãÀÆ:ÜWƒ|FÛÿ BŒÇÀeaŸ-sÊ€:úW½ÜÝÜ<%$µ†%CóDªÀí%IÈÏʤ…ôäñÞŒ÷‘a0“ôŽÚë¤nŸoW÷0«e¶y'Å»aΗ2r’# Û°A^ý9ÉQÔõ=ù5¬£Öü.(Þ’M$~V«=éSÄFN½®©ÔWô»ÿ þHžkR‹ìÏ+µµžöê;khÚI¤m¨‹Ôš–âÖçJ¾_Z•’6a”Èô> ÕÉaÕ<%®£2n bQŠå\tÈõUÿ ø»þ‹k15‚ÃuCL$ݹp P1=Oøýs¯^u éEJ”–éêŸê½5ýzy›jÛ³á›Ûkÿ ÚOcn±ÛÏîW;boºz{ãžüVÆ¡a£a5½äÎÂks¸J@?1è¿{$ä‘=k”øsÖ^nŒ¦)ÝåXÃíùN1ØõÚOJë–xF÷h¸ Œ"Ž?x䜚ü³ì¨c*Fœ¯i;7~ñí׫Ðó¥Ë»3Ãü púw ‰°<Á%»ñž ÿ P+Û^ ¾Ye£ŽCÄŒ„/>˜>•á¶Ìm~&&À>M[hÈÈÿ [Ž•íd…RO@3^Ç(ʽ*¶ÖQZyßþ
1Vº}Ñç?¼O4Rh6R€ª£í¡ûÙ
a‚3ß·Õ
ü=mRÍ/µ9¤‚0ÑC¼Iè:cŽsÛ¾™x£ÆÐ¬ªÍöˢ샒W$•€Å{¨ÀPG
ÀÀàŸZìÍ1RÉ0´ðxEË9+Éÿ ^rEÕ—±Š„70l¼áË@û.' ¼¹Žz€N3úUÉ<3á×*?²¬‚ä†"Ùc=p íÛ'¡ª1ñ"økJ†HÒ'»Ÿ+
oÏN¬Ã9 dÙãÜדÏâÍ~æc+j·Jzâ7(£ðW]•æ™?nê´º6åwéåç÷N•ZŠíž›¬|?Ðõ?Ñ-E…®³ÇV$~X¯/…õ x‘LˆÑÜÚÈ7¦pzãÜüë½ðÄ^õtÝYËÍ7ÉÖÕ8ÏUe# #€r=sU¾/é’E§jRC4mxNÝ´9†íuá»›V‘
ZI€×cr1Ÿpzsøf»¨åV‹ìû`qËLÊIã?\~¼³áËC©êhªOîO»‘ÃmçÛçút×¢x“Z}?Üê#b-¤X7õÄò gž zzbº3œm*qvs·M=íúéw}¿&Úª°^Ö×µÏ(ø‡â†Öµƒenñý†×åQáYûœ÷ÇLœôÎNk¡ð‡¼/µ¸n0æÉ0¬ƒ‚üîÉÆvŒw®Sáö”š¯‹-üÕVŠØÙ[$`(9cqƒÔ_@BëqûÙ`Ýæ0;79È?w<ó |ÙÜkßÌ1±Ëã¿ìÒ»ðlìï«ÓnªèèrP´NÏš&ŽéöÙ¸÷æ°~-_O'‰`°!RÚÚÝ%]Ø%þbß1'¿ÿ XÕáOöÎŒ·‹¬+Åæ*ÛÛ™0¤ƒOÍÔ`u¯¦ÂaèÐÃÓ«‹¨Ô¥µœ¿¯ÉyÅÙ.oÔôŸ Úx&(STðݽ¦õ] ’ÒNóÁäÈùr3í·žÚ[™ƒ¼veÈ÷ÞIõÎGlqÎ=M|«gsªxÅI6
]Z·Îªä,¨zŒŽÄ~#ØŠúFñiÉqc©éÐD>S딑 GñŽ1éÐ^+
Ëi;Ô„µVÕú»i¯ÈÒ-ZÍ]òܘ®ì`bÛÙ¥_/y(@÷qÐúg Ô÷W0.Ø›
6Ò© r>QƒŒ0+Èîzb¨É+I0TbNñ"$~)ÕÒ6Þ‹{0VÆ27œWWñcÄcX×íôûyKZéðªc'iQ¿¯LaWŠŸS\·Š“źʸ…ôÙÂí|öÀÇåV|!¤ÂGâÛ[[’ï
3OrÙËPY¹=Î1õ5öåTžÑè Ú64/üö?Zëžk}¬¶éàoá¾á}3“ü]8Éæ¿´n²Žš_6¾pœ)2?úWÓÚ¥¾¨iWúdŽq{*ª1rXŒd…m»‰äcô¯–dâ•ã‘Jº¬§¨#¨®§,df«8ÉÅßN¾hˆ;îÓ=7áùpën®É 6ûJžO2^œÐò JÖø¥²ã›Ò6Ü·‰!wbÍ‚¬O©»õ¬ÿ ƒP=Ä:â¤-&ÙŽ
`È9 r9íϧzë> XÅ7ƒ5X–krÑ¢L7€ìw}ÑŸNHëŒüþ:2†á¼+u·á÷N/Û'Ðç~ߘô«ëh!ónRéeQ´6QÛÿ èEwëÅÒ|¸Yqó1uêyùzð8 ƒŠù¦Ò;¹ä6öi<'ü³„[ÃZhu½ ùÍ¡g‚>r¯×ŠîÌx}bñ2“k꣧oø~›hTèóËWò4|ki"xßQ˜Ï6øÀLnß‚0 ¹Æ{±–¶Öe#¨27È@^Ìß.1N¾œyç€õ†ñeé·Õã†çQ°€=Ì©ºB€Ø8<‚ÃSõ®ùcc>×Ú .Fr:žÝGæ=kÁâ,^!Fž
¬,àµ}%¶«îõ¹†"r²ƒGœüYÕd?aÑÃY®49PyU ÷þ!žxÅm|/‚ãNð˜¼PcûTÒ,¹/Ý=FkÏ|u¨¶«âë…{¤m¢]Û¾ïP>®XãÞ½iÓÁ¾
‰'¬–6ß¼(„ï— í!úÙäzôë^–:œ¨å|,_¿&š×]uÓѵÛô4’j”bž§x‘Æ©ã›á,‚[Ô
ÎÞ= ŒËæ ÀùYÁ?ŽïÚ¼?ÁªxºÕÛ,°1¸‘¿ÝäãØ¯v…@¤åq½ºã œàûââ·z8Xýˆþz~—û»™âµj=Ž
â~ãáh@'h¼F#·Üp?ŸëQü-løvépx»cŸø…lxâÃûG·‰¶ø”L£©%y?¦úõÆü-Õ¶¥y`Òl7>q’2üA?•F}c‡jB:¸Jÿ +§¹¿¸Q÷°ív=VÑìu[Qml%R7a×IèTõéŽx¬
?†š7
1†îã-ˆã’L¡lŽ0OÓ=ÅuˆpÇ•¼3ÛùÒ¶W/!|’wŽw^qÔ×ÏaóM8Q¨ãÑ?ëï0IEhÄa¸X•`a
?!ÐñùQ!Rä žqŽžÝO`I0ÿ J“y|ñ!Îã@99>þ8–+éáu…!ù—ä
ʰ<÷6’I®z
ÅS„¾)Zþ_Öýµ×ËPåOwø÷þ*üïænÖùmØÝûþ¹=>¦½öî×Jh]¼ç&@§nTŒ6ITÀõ^Fxð7Å3!Ö·aÛ$þÿ ¹ã5îIo:ȪmËY[’8ÇӾlj*òû¢¥xõ¾¼ú•åk+\ð¯ HÚoŽl•Ûk,¯ ç²²cõÅ{²Z\
´ìQ åpzŽ3Ôð}ÿ Jð¯XO¡øÎé€hÙ¥ûLdŒ`““ù6Gá^ÃáÝ^Ë[Ñb¾YåŒÊ»dŽ4†2§,;ÿ CQÄ´¾°¨c–±”mºV{«ßÕýÄW\ÖŸ‘çŸ,çMRÆí“l-ƒn~ë©ÉÈê Ü?#Ž•¹ðãSÒ¥ÐWNíà½;ãž)™ÎSÈ9cóLj뵿ūiÍk¨ió¶X‚7÷ƒ€yãnyÏŽëÞ Öt`×À×V's$È9Ú:ä{wÆEk€«†Çàc—â$éÎ.éí~Ýëk}ÅAÆpörÑ¢‡Šl¡ÑüSs‹¨‰IÄóÀ×wñ&eºðf™pŒÆ9gŽTø£lñëÀçŽ NkÊUK0U’p ï^¡ãÈ¥´ø{£ÙHp`’ØåbqÏ©äó^Æ:
Ž' ÊóM«õz+ß×ó5Ÿ»('¹ð¦C„$˜Å¢_ºÈI?»^äã'ñêzž+ë€ñ-½»´}¡Ë*õ?.xÇ^1ŽMyǸ&“—L–îëöâ7…' bqéÎGé]˪â1$o²¸R8Ã`.q€}sÖ¾C98cêÆÞíïóòvÓòùœÕfÔÚéýuèÖ·Ú
Å‚_¤³ÜۺƑß”àרý:׃xPþÅÕî-/üØmnQìïGΊÙRqê=>¢½õnæ·r!—h`+’;ò3È<“Û©éšóŸx*÷V¹¸×tÈiˆßwiÔÿ |cŒñÏ®3ֽ̰‰Ë Qr©ö½®¼ÛoÑÙZÅÑ«O൯ýw8;k›ÿ x†;ˆJa;‘º9÷÷R+¡ñgŽí|Iáë{ôáo2ʲ9 029ÉÏLí\‰¿¸Ÿb˜ "Bv$£ßiê>=ªª©f
’N ëí>¡NXW~5×úíø\‰»½Ï^ø(—wÖú¥¤2íŽÞXæÁ$°eÈ888^nÝë²ñÝÔ^ ÖÚ9Q~Ëå7ï
DC¶ÑµƒsËÇè9®Wáþƒ6‡£´·°2\Ý:ÈÑ?(#¨'$õèGJ¥ñW\ÿ ‰E¶—¸™g˜ÌÀ¹;Pv ú±ÎNs·ëŸ’–"Ž/:té+ûË]öJöÓM»ëø˜*‘•^Uý—êd|‰åñMæÔÝ‹23å™6æHùÛ‚ëüñ^…ñ1¢oêûÑEØ.õ7*ÅHtÎp{g<·Á«+¸c¿¿pÓ¾Æby=8É_ÄsÆk¬ñB\jÞÔì••Ë[9Píb‹Bヅ =93§ð§LšÛáÖšÆæXÌÞdÛP.0\ãïÛ0?™úJ¸™Ë
”•œº+=<µI£¦í¯õêt¬d‹T¬P=ËFêT>ÍØØ@Ï9<÷AQÌ×»Õ¡xùk",JÎæù±Éç$œŽŸZWH®¯"·UÌQ ’ÙÈ]ÅXg<ã
ߨg3-Üqe€0¢¨*Œ$܃
’Sû 8㎼_/e'+Ï–-èÓ¶¶Õíß[·ÙÙ½îì—¼sk%§µxä‰â-pÒeÆCrú
ôσžû=”šÅô(QW‚Õd\ƒæ. \àö¹¯F½°³½0M>‘gr÷q+œ¶NïºHO— ¤ ܥݔn·J|ÆP6Kµc=Isó}Ò çGš)a=—#vK›åoK§ßóÙ¤¶¿õú…ÄRÚ[ËsöÙ¼Ë•Ë ópw®qœŒ·Ø
ùÇâ‹ý‡ãKèS&ÞvûDAù‘É9ŒîqÅ}
$SnIV[]Ñ´Ó}ØÜ¾A Ü|½kÅþÓ|EMuR¼.I¼¶däò‚ÃkÆ}ðy¹vciUœZ…Õõ»z¾÷¿n¦*j-É/àœHã\y5 Û ß™ó0—äŸnzôã#Ô¯,†¥ÚeÔ÷ÜÅ´„“'c…<íÝ€<·SŠ¥k§Ã¢éÆÆÙna‚8–=«Êª[Ÿ™°pNî02z“ÔÙ–K8.È’Þî(vƒ2®@ äÈûãçžxäÇf¯ˆu¹yUÕîýWšÙ|›ëÒ%Q^í[æ|éo5ZY•^{96ˆY‚§v*x>âº_|U¹Ö´©tûMÒÂ9PÇ#«£#€ éÉñ‘ƒÍz/‰´-į¹°dd,Б›p03ƒœ{ç9=+
Ûᧇ¬¦[‡‚ê婺¸#±ß=³ý¿•Õµjñ½HÙh›Û[§ÚýÊöô÷{˜?ô÷·Ô.u©–_%còcAÀ˜’
}0x9Î>žñÇáÍ9,ahï¦Ì2òÓ ñÛAäry$V²Nð
]=$Ž
‚#Ù‚1ƒƒødõMax‡ÂÖ^!±KkÛ‘
«“Çó²FN8+ëÎ{Ò¼oí§[«ÕMRoËeç×[_m/¦¦k.kôgŽxsSÓ´ý`êzªÜÜKo‰cPC9ÎY‰#§^üý9¹âïÞx£Ë·Ú`±‰‹¤;³–=ÏaôÕAð‚÷kêÁNBéÎælcõö®£Fð†ô2Ò¬]ßÂK$ÓÜ®•”/ÊHàã$ä¸÷ëf¹Oµúâ“”’²øè´µþöjçNü÷üÌ¿ xNïFÒd»¼·h®îT9ŽAµÖ>qÁçÔœtïÒ»\ȶÎîcÞäîó3¶@#ÉIÎ ÔñW.<´’¥–ÑÑ€ÕšA‚ ;†qÓë‚2q
ÒÂó$# Çí‡
!Ë}Õ9ÈÎÑÉã=;ŒÇÎuñ+ÉûÏ¥öíeÙ+$úíÜ娯'+êZH4ƒq¶FV‹gïŒ208ÆÌ)íб>M|÷âÍã¾"iì‹¥£Jd´™OÝç;sÈúr+ÜäˆË)DŒ¥šF°*3Õ”d{zÔwºQ¿·UžÉf†~>I+ŒqÔ`ð3œ“Ü×f]œTÁÔn4“ƒø’Ýßõ_«*5šzGCÊ,þ+ê1ò÷O¶¸cœºb2yÇ;cùÕ£ñh¬›áÑŠr¤ÝäNBk¥—á—†gxšX/쑘hŸ*Tçn =ûã¦2|(ð¿e·ºÖ$
ýìŸ!'åΰyîî+×öœ=Y:²¦ÓÞ×iü’—ü
-BK™£˜›âÆ¡&véðõ-ûÉY¹=Onj¹ø¯¯yf4·±T Pó`çœ7={×mÃ/¢˜ZÚòK…G½¥b„’G AãÜœ*í¯Ã¿ IoæI¦NU8‘RwÈã;·€ Û×ëÒ”1Y
•£E»ÿ Oyto¢<£Áö·šï,䉧ûA¼sû»Nò}¹üE{ÜÖªò1’õÞr0â}ÎØ#>à/8ïéÎ~—áÍ#ñÎlí§³2f'h”?C÷YËdð:qëõÓ·‚ïeÄ©
ÔÈØÜRL+žAÎ3¼g=åšó³Œt3
ÑQ¦ùRÙßE®¼±w_;þhš’Sirÿ ^ˆã¼iੇ|RòO„m°J/“$·l“ ÇÓ¿ÿ [ÑŠÆ“„†Õø>cFÆ6Ø1ƒ– àz7Ldòxäüwá‹ÝAXùO•Úý’é®ähm •NÀ±ÌTÈç
ƒ‘I$pGž:‚ÄbêW¢®œ´|¦nÍ>¶ÖÏ¢§ÎÜ¢ºö¹•%ÄqL^öÛKpNA<ã¡ …î==ª¸óffËF‡yÌcÉ ©ç$ð=ñÏYþÊ’Ú]—¥‚¬‚eDïÎH>Ÿ_ÌTP™a‰ch['çÆÜò7a‡?w°Ïn§âÎ5”’¨¹uÚÛ|´ÓÓc§{O—ü1•ªxsÃZ…ÊÏy¡Ã3¸Ë2Èé» ‘ƒÎ äžÜðA§cáOéúÛ4ý5-fŒï„ù¬ûô.Ç Üsž•Ò¾•wo<¶Ÿ"¬¡º|£
î2sÇ¡éE²ÉFѱrU°dÜ6œ¨ mc†Îxë׺Þ'0²¡Rr„{j¾í·è›µ÷)º·å–‹î2|I®Y¼ºÍË·–ÃÆàã£'óÆxƒOÆÞ&>\lóÌxP Xc¸ì Sþ5§qà/ê>#žÞW¸if$\3 ® ûÄ“ùŽÕê¾ð<Ó‹H¶óÏ" å·( á‘€:ã†8Ï=+ꨬUA×ÃËÚT’ÑÞöù¥¢]{»ms¥F0\ÑÕ—ô}&ÛB´ƒOŽÚ+›xíÄÀ1
,v± žIëíZ0ǧ™3í2®0ทp9öÝÔž)ÓZËoq/Ú“‘L ²ŒmùŽï‘Ó9§[Û#Ä‘\ÞB¬Çs [;à à«g‚2ôòªœÝV§»·¯/[uó½õÛï¾
/šÍ}öüÿ «=x»HŸÂÞ.™ ÌQùŸh´‘#a$‚'¡u<Š›Æ>2>+ƒLSiöwµFó1!eg`£åœ ÷ëÛö}Á¿ÛVÙêv $¬ƒ|,s÷z€ð΃¨x÷ÅD\ÜŒÞmåÔ„ ˆ o| :{ÇÓ¶–òÁn!´0Ål€, ƒ ( ÛŒŒc¶rsšæ,4‹MÛOH!@¢ ÇŽ„`å²9ÝÃw;AÍt0®¤¡…¯ØÄ.Àìí´ƒ‘ßñ5Í,Óëu-ÈÔc¢KÃÓ£òÖ̺U.õL¯0…%2È—"~x
‚[`có±nHàŽyàö™¥keˆìŒÛFç{(Ø©†`Jã#Žwg<“:ÚÉ;M
^\yhûX‡vB·÷zrF?§BÊÔ/s<ÐÈB)Û± ·ÍÔwç5Âã:så§e{mѤï«Òíh—]Wm4âí¿ùþW4bC3¶ª¾Ùr$pw`àädzt!yŠI„hÂîàM)!edŒm'æ>Ç?wzºKìcŒ´¯Ìq6fp$)ãw¡éUl`µ»ARAˆÝÕgr:äŒgƒéé[Ôö±”iYs5Ýï«ÙG—K=þF’æMG«óÿ `ŠKɦuOQ!ÕåŒ/ÎGÞ`@ËqÕzdõâ«Ê/Ö(ƒK´%ŽbMüåÜŸö—>¤óŒŒV‘°„I¢Yž#™¥ùÏÊ@8
œgqöö5ª4vד[¬(q cò¨À!FGaÁõõ¯?§†¥ÏU½í¿WªZ$úyú½Žz×§Éþ?>Ã×È•6°{™™ŽÙ.$`ÎUœ…çè ' ¤r$1Ø(y7 ðV<ž:È ÁÎMw¾Â'Øb§øxb7gãО½óÉÊë²,i„Fȹ£§8ãä½k¹¥¦ê/ç{ïê驪2œ/«ü?¯Ô›ìñÜ$þeýœRIåŒg9Ác’zrrNO bÚi¢
ѺË/$,“ª¯Ýä;Œ× ´<ÛÑn³IvŸb™¥ nm–ÄŸ—nÝÀãŽ3ëÍG,.öó³˜Ù£¹uÊÌrŠ[<±!@Æ:c9ÅZh
ì’M5ÄìÌ-‚¼ëÉùqŽGì9¬á ;¨A-ž—évþÖ–^ON·Ô”ŸEý}ú×PO&e[]ÒG¸˜Ûp ƒÃà/Ë·8ûÀ€1ž@¿ÚB*²¼ñì8@p™8Q“žÆH'8«I-%¸‚
F»“åó6°Uù|¶Ú¸ã ò^Äw¥ŠÖK–1ÜÝK,Žddlí²0PÀü“×ükG…¯U«·¶–´w¶ŽÍ¾©yÞú[Zös•¯Á[™6°
¨¼ÉVæq·,#
ìãï‘×8îry®A››¨,ãc66»Ë´ã'æÉù?t}¢æH--Òá"›|ˆ¬[í 7¶ö#¸9«––‹$,+Ëqœ\Êøc€yê^ݸÄa°«™B-9%«×®‹V´w~vÜTéꢷþ¼ˆ%·¹• ’[xç•÷2gØS?6åÀÚ õ9É#š@÷bT¸º²C*3Bá¤òÎA9 =úU§Ó"2Ãlá0iÝIc‚2Î@%öç94ùô»'»HÄ¥Ô¾@à Tp£šíx:úÊ:5eºßMý×wµ›Ó_+šº3Ýyvÿ "ºÇ<ÂI>Õ1G·Ë«È«É# àÈÇ øp Jv·šæDûE¿›†Ë’NFr2qŸ½ÇAÜšu•´éí#Ħ8£2”Ú2Ã/€[ÎTr;qŠz*ý’Îþ(≠;¡TÆâ›;ºÿ àçœk‘Þ8¾Uª¾íé{^×IZéwÓkXÉûÑZo¯_øo×È¡¬ â–ÞR§2„‚Àœü½ùç® SVa†Âüª¼±D‘ŒísŸàä|ä2 æ[‹z”¯s{wn„ÆmáóCO+†GO8Ïeçåº`¯^¼ðG5f{Xžä,k‰<á y™¥voÆ éÛõëI=œ1‹éíÔÀÑ)R#;AÂncäŽ:tÏ#¶TkB.0Œ-ÖÞZÛgumß}fÎJÉ+#2êÔP£žùÈÅi¢%œ3P*Yƒò‚A쓎2r:ƒÐúñiRUQq‰H9!”={~¼“JŽV¥»×²m.ÛߺiYl¾òk˜gL³·rT•
’…wHÁ6ä`–Î3ùÌ4Øe³†&òL‘•%clyîAÂäà0 žüç$[3uŘpNOÀÉ=† cï{rYK
ååä~FÁ
•a»"Lär1Ó¯2Äõæ<™C•.fÕ»è¥~½-¿g½Â4¡{[ør¨¶·Žõäx¥’l®qpwÇ»8ärF \cޏܯÓ-g‚yciÏÀ¾rÎwèØÈ#o°Á9ã5¢šfÔxÞæfGusÏÌJÿ µ×œ/LtãÅT7²¶w,l
ɳ;”eúà·¨çîŒsÜgTÃS¦^ '~‹®›¯+k÷ZÖd©Æ*Ó[Ü«%Œk0ŽXƒ”$k#Ȩ P2bv‘ƒŸáÇ™ÆÕb)m$É*8óLE‘8'–ÜN Úyàúô+{uº±I'wvš4fÜr íì½=úuú
sFlìV$‘ö†HÑù€$§ õ=½¸«Ž]
:Ž+•¦ïmRþ½l´îÊT#nkiøÿ _ðÆT¶7Ò½ºÒ£Î¸d\ã8=yãŽÜäR{x]ZâÚé#¸r²#»ÎHÆ6õ ç® ÎFkr;sºÄ.&;só±Ç9êH÷ýSšÕtÐU¢-n Ì| vqœ„{gŒt§S.P‹’މ_[;m¥ÞZýRûÂX{+¥úü¼ú•-àÓ7!„G"“´‹žƒnrYXã¸îp éœ!ÓoPÌtÑ (‰Þ¹é€sÓ#GLçÕšÑnJý¡!‘Tä#“ß?îýp}xÇ‚I¥Õn#·¸–y'qó@r[ Êô÷<ÔWÃÓ¢áN¥4Ô’I&ݼ¬¬¼ÞºvéÆ
FQV~_ÒüJÖÚt¥¦Xá3BÄP^%ÈÎW-×c¡ú©¤·Iþèk¥š?–UQåIR[’O 5x\ÉhÆI¶K4«2ùªŠŒ<¼óœçØ`u«‚Í.VHä€ Ëgfx''9ÆI#±®Z8
sISºku¢ßÞ]úk»Jößl¡B.Ü»ÿ MWe
°·Ž%šêɆ¼»Âù³´œ O¿cÐÓÄh©"ÛÜÏ.ÖV’3nüÄmnq[ŒòznšÖ>J¬òˆæ…qýØP Ž:ä7^0yëWšÍ_79äoaÈ °#q0{ää×mœy”R{vÒÞ¶ÚÏe¥“ÚÆÐ¥Ì®—õýjR •íç›Ìb„+JyÜØÙ•Ç]¿Ôd þËOL²”9-Œ—õÃc'æÝלçÚ²ìejP“½
âù°¨†ðqòädЃÉäÖÜj÷PÇp“ÍšŠå«‘î
<iWNsmª»¶vÓz5»ûì:Rs\Ðßôû×uÔÿÙ