Server IP : 172.67.145.202 / Your IP : 108.162.227.14 Web Server : Apache/2.2.15 (CentOS) System : Linux GA 2.6.32-431.1.2.0.1.el6.x86_64 #1 SMP Fri Dec 13 13:06:13 UTC 2013 x86_64 User : apache ( 48) PHP Version : 5.6.38 Disable Function : NONE MySQL : ON | cURL : ON | WGET : ON | Perl : ON | Python : ON | Sudo : ON | Pkexec : OFF Directory : /usr/src/openssl-1.0.1g/crypto/ec/ |
Upload File : |
| Current File : /usr/src/openssl-1.0.1g/crypto/ec/ecp_nistp224.c |
/* crypto/ec/ecp_nistp224.c */
/*
* Written by Emilia Kasper (Google) for the OpenSSL project.
*/
/* Copyright 2011 Google Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
*
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* A 64-bit implementation of the NIST P-224 elliptic curve point multiplication
*
* Inspired by Daniel J. Bernstein's public domain nistp224 implementation
* and Adam Langley's public domain 64-bit C implementation of curve25519
*/
#include <openssl/opensslconf.h>
#ifndef OPENSSL_NO_EC_NISTP_64_GCC_128
#ifndef OPENSSL_SYS_VMS
#include <stdint.h>
#else
#include <inttypes.h>
#endif
#include <string.h>
#include <openssl/err.h>
#include "ec_lcl.h"
#if defined(__GNUC__) && (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 1))
/* even with gcc, the typedef won't work for 32-bit platforms */
typedef __uint128_t uint128_t; /* nonstandard; implemented by gcc on 64-bit platforms */
#else
#error "Need GCC 3.1 or later to define type uint128_t"
#endif
typedef uint8_t u8;
typedef uint64_t u64;
typedef int64_t s64;
/******************************************************************************/
/* INTERNAL REPRESENTATION OF FIELD ELEMENTS
*
* Field elements are represented as a_0 + 2^56*a_1 + 2^112*a_2 + 2^168*a_3
* using 64-bit coefficients called 'limbs',
* and sometimes (for multiplication results) as
* b_0 + 2^56*b_1 + 2^112*b_2 + 2^168*b_3 + 2^224*b_4 + 2^280*b_5 + 2^336*b_6
* using 128-bit coefficients called 'widelimbs'.
* A 4-limb representation is an 'felem';
* a 7-widelimb representation is a 'widefelem'.
* Even within felems, bits of adjacent limbs overlap, and we don't always
* reduce the representations: we ensure that inputs to each felem
* multiplication satisfy a_i < 2^60, so outputs satisfy b_i < 4*2^60*2^60,
* and fit into a 128-bit word without overflow. The coefficients are then
* again partially reduced to obtain an felem satisfying a_i < 2^57.
* We only reduce to the unique minimal representation at the end of the
* computation.
*/
typedef uint64_t limb;
typedef uint128_t widelimb;
typedef limb felem[4];
typedef widelimb widefelem[7];
/* Field element represented as a byte arrary.
* 28*8 = 224 bits is also the group order size for the elliptic curve,
* and we also use this type for scalars for point multiplication.
*/
typedef u8 felem_bytearray[28];
static const felem_bytearray nistp224_curve_params[5] = {
{0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, /* p */
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01},
{0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, /* a */
0xFF,0xFF,0xFF,0xFF,0xFF,0xFE,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE},
{0xB4,0x05,0x0A,0x85,0x0C,0x04,0xB3,0xAB,0xF5,0x41, /* b */
0x32,0x56,0x50,0x44,0xB0,0xB7,0xD7,0xBF,0xD8,0xBA,
0x27,0x0B,0x39,0x43,0x23,0x55,0xFF,0xB4},
{0xB7,0x0E,0x0C,0xBD,0x6B,0xB4,0xBF,0x7F,0x32,0x13, /* x */
0x90,0xB9,0x4A,0x03,0xC1,0xD3,0x56,0xC2,0x11,0x22,
0x34,0x32,0x80,0xD6,0x11,0x5C,0x1D,0x21},
{0xbd,0x37,0x63,0x88,0xb5,0xf7,0x23,0xfb,0x4c,0x22, /* y */
0xdf,0xe6,0xcd,0x43,0x75,0xa0,0x5a,0x07,0x47,0x64,
0x44,0xd5,0x81,0x99,0x85,0x00,0x7e,0x34}
};
/* Precomputed multiples of the standard generator
* Points are given in coordinates (X, Y, Z) where Z normally is 1
* (0 for the point at infinity).
* For each field element, slice a_0 is word 0, etc.
*
* The table has 2 * 16 elements, starting with the following:
* index | bits | point
* ------+---------+------------------------------
* 0 | 0 0 0 0 | 0G
* 1 | 0 0 0 1 | 1G
* 2 | 0 0 1 0 | 2^56G
* 3 | 0 0 1 1 | (2^56 + 1)G
* 4 | 0 1 0 0 | 2^112G
* 5 | 0 1 0 1 | (2^112 + 1)G
* 6 | 0 1 1 0 | (2^112 + 2^56)G
* 7 | 0 1 1 1 | (2^112 + 2^56 + 1)G
* 8 | 1 0 0 0 | 2^168G
* 9 | 1 0 0 1 | (2^168 + 1)G
* 10 | 1 0 1 0 | (2^168 + 2^56)G
* 11 | 1 0 1 1 | (2^168 + 2^56 + 1)G
* 12 | 1 1 0 0 | (2^168 + 2^112)G
* 13 | 1 1 0 1 | (2^168 + 2^112 + 1)G
* 14 | 1 1 1 0 | (2^168 + 2^112 + 2^56)G
* 15 | 1 1 1 1 | (2^168 + 2^112 + 2^56 + 1)G
* followed by a copy of this with each element multiplied by 2^28.
*
* The reason for this is so that we can clock bits into four different
* locations when doing simple scalar multiplies against the base point,
* and then another four locations using the second 16 elements.
*/
static const felem gmul[2][16][3] =
{{{{0, 0, 0, 0},
{0, 0, 0, 0},
{0, 0, 0, 0}},
{{0x3280d6115c1d21, 0xc1d356c2112234, 0x7f321390b94a03, 0xb70e0cbd6bb4bf},
{0xd5819985007e34, 0x75a05a07476444, 0xfb4c22dfe6cd43, 0xbd376388b5f723},
{1, 0, 0, 0}},
{{0xfd9675666ebbe9, 0xbca7664d40ce5e, 0x2242df8d8a2a43, 0x1f49bbb0f99bc5},
{0x29e0b892dc9c43, 0xece8608436e662, 0xdc858f185310d0, 0x9812dd4eb8d321},
{1, 0, 0, 0}},
{{0x6d3e678d5d8eb8, 0x559eed1cb362f1, 0x16e9a3bbce8a3f, 0xeedcccd8c2a748},
{0xf19f90ed50266d, 0xabf2b4bf65f9df, 0x313865468fafec, 0x5cb379ba910a17},
{1, 0, 0, 0}},
{{0x0641966cab26e3, 0x91fb2991fab0a0, 0xefec27a4e13a0b, 0x0499aa8a5f8ebe},
{0x7510407766af5d, 0x84d929610d5450, 0x81d77aae82f706, 0x6916f6d4338c5b},
{1, 0, 0, 0}},
{{0xea95ac3b1f15c6, 0x086000905e82d4, 0xdd323ae4d1c8b1, 0x932b56be7685a3},
{0x9ef93dea25dbbf, 0x41665960f390f0, 0xfdec76dbe2a8a7, 0x523e80f019062a},
{1, 0, 0, 0}},
{{0x822fdd26732c73, 0xa01c83531b5d0f, 0x363f37347c1ba4, 0xc391b45c84725c},
{0xbbd5e1b2d6ad24, 0xddfbcde19dfaec, 0xc393da7e222a7f, 0x1efb7890ede244},
{1, 0, 0, 0}},
{{0x4c9e90ca217da1, 0xd11beca79159bb, 0xff8d33c2c98b7c, 0x2610b39409f849},
{0x44d1352ac64da0, 0xcdbb7b2c46b4fb, 0x966c079b753c89, 0xfe67e4e820b112},
{1, 0, 0, 0}},
{{0xe28cae2df5312d, 0xc71b61d16f5c6e, 0x79b7619a3e7c4c, 0x05c73240899b47},
{0x9f7f6382c73e3a, 0x18615165c56bda, 0x641fab2116fd56, 0x72855882b08394},
{1, 0, 0, 0}},
{{0x0469182f161c09, 0x74a98ca8d00fb5, 0xb89da93489a3e0, 0x41c98768fb0c1d},
{0xe5ea05fb32da81, 0x3dce9ffbca6855, 0x1cfe2d3fbf59e6, 0x0e5e03408738a7},
{1, 0, 0, 0}},
{{0xdab22b2333e87f, 0x4430137a5dd2f6, 0xe03ab9f738beb8, 0xcb0c5d0dc34f24},
{0x764a7df0c8fda5, 0x185ba5c3fa2044, 0x9281d688bcbe50, 0xc40331df893881},
{1, 0, 0, 0}},
{{0xb89530796f0f60, 0xade92bd26909a3, 0x1a0c83fb4884da, 0x1765bf22a5a984},
{0x772a9ee75db09e, 0x23bc6c67cec16f, 0x4c1edba8b14e2f, 0xe2a215d9611369},
{1, 0, 0, 0}},
{{0x571e509fb5efb3, 0xade88696410552, 0xc8ae85fada74fe, 0x6c7e4be83bbde3},
{0xff9f51160f4652, 0xb47ce2495a6539, 0xa2946c53b582f4, 0x286d2db3ee9a60},
{1, 0, 0, 0}},
{{0x40bbd5081a44af, 0x0995183b13926c, 0xbcefba6f47f6d0, 0x215619e9cc0057},
{0x8bc94d3b0df45e, 0xf11c54a3694f6f, 0x8631b93cdfe8b5, 0xe7e3f4b0982db9},
{1, 0, 0, 0}},
{{0xb17048ab3e1c7b, 0xac38f36ff8a1d8, 0x1c29819435d2c6, 0xc813132f4c07e9},
{0x2891425503b11f, 0x08781030579fea, 0xf5426ba5cc9674, 0x1e28ebf18562bc},
{1, 0, 0, 0}},
{{0x9f31997cc864eb, 0x06cd91d28b5e4c, 0xff17036691a973, 0xf1aef351497c58},
{0xdd1f2d600564ff, 0xdead073b1402db, 0x74a684435bd693, 0xeea7471f962558},
{1, 0, 0, 0}}},
{{{0, 0, 0, 0},
{0, 0, 0, 0},
{0, 0, 0, 0}},
{{0x9665266dddf554, 0x9613d78b60ef2d, 0xce27a34cdba417, 0xd35ab74d6afc31},
{0x85ccdd22deb15e, 0x2137e5783a6aab, 0xa141cffd8c93c6, 0x355a1830e90f2d},
{1, 0, 0, 0}},
{{0x1a494eadaade65, 0xd6da4da77fe53c, 0xe7992996abec86, 0x65c3553c6090e3},
{0xfa610b1fb09346, 0xf1c6540b8a4aaf, 0xc51a13ccd3cbab, 0x02995b1b18c28a},
{1, 0, 0, 0}},
{{0x7874568e7295ef, 0x86b419fbe38d04, 0xdc0690a7550d9a, 0xd3966a44beac33},
{0x2b7280ec29132f, 0xbeaa3b6a032df3, 0xdc7dd88ae41200, 0xd25e2513e3a100},
{1, 0, 0, 0}},
{{0x924857eb2efafd, 0xac2bce41223190, 0x8edaa1445553fc, 0x825800fd3562d5},
{0x8d79148ea96621, 0x23a01c3dd9ed8d, 0xaf8b219f9416b5, 0xd8db0cc277daea},
{1, 0, 0, 0}},
{{0x76a9c3b1a700f0, 0xe9acd29bc7e691, 0x69212d1a6b0327, 0x6322e97fe154be},
{0x469fc5465d62aa, 0x8d41ed18883b05, 0x1f8eae66c52b88, 0xe4fcbe9325be51},
{1, 0, 0, 0}},
{{0x825fdf583cac16, 0x020b857c7b023a, 0x683c17744b0165, 0x14ffd0a2daf2f1},
{0x323b36184218f9, 0x4944ec4e3b47d4, 0xc15b3080841acf, 0x0bced4b01a28bb},
{1, 0, 0, 0}},
{{0x92ac22230df5c4, 0x52f33b4063eda8, 0xcb3f19870c0c93, 0x40064f2ba65233},
{0xfe16f0924f8992, 0x012da25af5b517, 0x1a57bb24f723a6, 0x06f8bc76760def},
{1, 0, 0, 0}},
{{0x4a7084f7817cb9, 0xbcab0738ee9a78, 0x3ec11e11d9c326, 0xdc0fe90e0f1aae},
{0xcf639ea5f98390, 0x5c350aa22ffb74, 0x9afae98a4047b7, 0x956ec2d617fc45},
{1, 0, 0, 0}},
{{0x4306d648c1be6a, 0x9247cd8bc9a462, 0xf5595e377d2f2e, 0xbd1c3caff1a52e},
{0x045e14472409d0, 0x29f3e17078f773, 0x745a602b2d4f7d, 0x191837685cdfbb},
{1, 0, 0, 0}},
{{0x5b6ee254a8cb79, 0x4953433f5e7026, 0xe21faeb1d1def4, 0xc4c225785c09de},
{0x307ce7bba1e518, 0x31b125b1036db8, 0x47e91868839e8f, 0xc765866e33b9f3},
{1, 0, 0, 0}},
{{0x3bfece24f96906, 0x4794da641e5093, 0xde5df64f95db26, 0x297ecd89714b05},
{0x701bd3ebb2c3aa, 0x7073b4f53cb1d5, 0x13c5665658af16, 0x9895089d66fe58},
{1, 0, 0, 0}},
{{0x0fef05f78c4790, 0x2d773633b05d2e, 0x94229c3a951c94, 0xbbbd70df4911bb},
{0xb2c6963d2c1168, 0x105f47a72b0d73, 0x9fdf6111614080, 0x7b7e94b39e67b0},
{1, 0, 0, 0}},
{{0xad1a7d6efbe2b3, 0xf012482c0da69d, 0x6b3bdf12438345, 0x40d7558d7aa4d9},
{0x8a09fffb5c6d3d, 0x9a356e5d9ffd38, 0x5973f15f4f9b1c, 0xdcd5f59f63c3ea},
{1, 0, 0, 0}},
{{0xacf39f4c5ca7ab, 0x4c8071cc5fd737, 0xc64e3602cd1184, 0x0acd4644c9abba},
{0x6c011a36d8bf6e, 0xfecd87ba24e32a, 0x19f6f56574fad8, 0x050b204ced9405},
{1, 0, 0, 0}},
{{0xed4f1cae7d9a96, 0x5ceef7ad94c40a, 0x778e4a3bf3ef9b, 0x7405783dc3b55e},
{0x32477c61b6e8c6, 0xb46a97570f018b, 0x91176d0a7e95d1, 0x3df90fbc4c7d0e},
{1, 0, 0, 0}}}};
/* Precomputation for the group generator. */
typedef struct {
felem g_pre_comp[2][16][3];
int references;
} NISTP224_PRE_COMP;
const EC_METHOD *EC_GFp_nistp224_method(void)
{
static const EC_METHOD ret = {
EC_FLAGS_DEFAULT_OCT,
NID_X9_62_prime_field,
ec_GFp_nistp224_group_init,
ec_GFp_simple_group_finish,
ec_GFp_simple_group_clear_finish,
ec_GFp_nist_group_copy,
ec_GFp_nistp224_group_set_curve,
ec_GFp_simple_group_get_curve,
ec_GFp_simple_group_get_degree,
ec_GFp_simple_group_check_discriminant,
ec_GFp_simple_point_init,
ec_GFp_simple_point_finish,
ec_GFp_simple_point_clear_finish,
ec_GFp_simple_point_copy,
ec_GFp_simple_point_set_to_infinity,
ec_GFp_simple_set_Jprojective_coordinates_GFp,
ec_GFp_simple_get_Jprojective_coordinates_GFp,
ec_GFp_simple_point_set_affine_coordinates,
ec_GFp_nistp224_point_get_affine_coordinates,
0 /* point_set_compressed_coordinates */,
0 /* point2oct */,
0 /* oct2point */,
ec_GFp_simple_add,
ec_GFp_simple_dbl,
ec_GFp_simple_invert,
ec_GFp_simple_is_at_infinity,
ec_GFp_simple_is_on_curve,
ec_GFp_simple_cmp,
ec_GFp_simple_make_affine,
ec_GFp_simple_points_make_affine,
ec_GFp_nistp224_points_mul,
ec_GFp_nistp224_precompute_mult,
ec_GFp_nistp224_have_precompute_mult,
ec_GFp_nist_field_mul,
ec_GFp_nist_field_sqr,
0 /* field_div */,
0 /* field_encode */,
0 /* field_decode */,
0 /* field_set_to_one */ };
return &ret;
}
/* Helper functions to convert field elements to/from internal representation */
static void bin28_to_felem(felem out, const u8 in[28])
{
out[0] = *((const uint64_t *)(in)) & 0x00ffffffffffffff;
out[1] = (*((const uint64_t *)(in+7))) & 0x00ffffffffffffff;
out[2] = (*((const uint64_t *)(in+14))) & 0x00ffffffffffffff;
out[3] = (*((const uint64_t *)(in+21))) & 0x00ffffffffffffff;
}
static void felem_to_bin28(u8 out[28], const felem in)
{
unsigned i;
for (i = 0; i < 7; ++i)
{
out[i] = in[0]>>(8*i);
out[i+7] = in[1]>>(8*i);
out[i+14] = in[2]>>(8*i);
out[i+21] = in[3]>>(8*i);
}
}
/* To preserve endianness when using BN_bn2bin and BN_bin2bn */
static void flip_endian(u8 *out, const u8 *in, unsigned len)
{
unsigned i;
for (i = 0; i < len; ++i)
out[i] = in[len-1-i];
}
/* From OpenSSL BIGNUM to internal representation */
static int BN_to_felem(felem out, const BIGNUM *bn)
{
felem_bytearray b_in;
felem_bytearray b_out;
unsigned num_bytes;
/* BN_bn2bin eats leading zeroes */
memset(b_out, 0, sizeof b_out);
num_bytes = BN_num_bytes(bn);
if (num_bytes > sizeof b_out)
{
ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
return 0;
}
if (BN_is_negative(bn))
{
ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
return 0;
}
num_bytes = BN_bn2bin(bn, b_in);
flip_endian(b_out, b_in, num_bytes);
bin28_to_felem(out, b_out);
return 1;
}
/* From internal representation to OpenSSL BIGNUM */
static BIGNUM *felem_to_BN(BIGNUM *out, const felem in)
{
felem_bytearray b_in, b_out;
felem_to_bin28(b_in, in);
flip_endian(b_out, b_in, sizeof b_out);
return BN_bin2bn(b_out, sizeof b_out, out);
}
/******************************************************************************/
/* FIELD OPERATIONS
*
* Field operations, using the internal representation of field elements.
* NB! These operations are specific to our point multiplication and cannot be
* expected to be correct in general - e.g., multiplication with a large scalar
* will cause an overflow.
*
*/
static void felem_one(felem out)
{
out[0] = 1;
out[1] = 0;
out[2] = 0;
out[3] = 0;
}
static void felem_assign(felem out, const felem in)
{
out[0] = in[0];
out[1] = in[1];
out[2] = in[2];
out[3] = in[3];
}
/* Sum two field elements: out += in */
static void felem_sum(felem out, const felem in)
{
out[0] += in[0];
out[1] += in[1];
out[2] += in[2];
out[3] += in[3];
}
/* Get negative value: out = -in */
/* Assumes in[i] < 2^57 */
static void felem_neg(felem out, const felem in)
{
static const limb two58p2 = (((limb) 1) << 58) + (((limb) 1) << 2);
static const limb two58m2 = (((limb) 1) << 58) - (((limb) 1) << 2);
static const limb two58m42m2 = (((limb) 1) << 58) -
(((limb) 1) << 42) - (((limb) 1) << 2);
/* Set to 0 mod 2^224-2^96+1 to ensure out > in */
out[0] = two58p2 - in[0];
out[1] = two58m42m2 - in[1];
out[2] = two58m2 - in[2];
out[3] = two58m2 - in[3];
}
/* Subtract field elements: out -= in */
/* Assumes in[i] < 2^57 */
static void felem_diff(felem out, const felem in)
{
static const limb two58p2 = (((limb) 1) << 58) + (((limb) 1) << 2);
static const limb two58m2 = (((limb) 1) << 58) - (((limb) 1) << 2);
static const limb two58m42m2 = (((limb) 1) << 58) -
(((limb) 1) << 42) - (((limb) 1) << 2);
/* Add 0 mod 2^224-2^96+1 to ensure out > in */
out[0] += two58p2;
out[1] += two58m42m2;
out[2] += two58m2;
out[3] += two58m2;
out[0] -= in[0];
out[1] -= in[1];
out[2] -= in[2];
out[3] -= in[3];
}
/* Subtract in unreduced 128-bit mode: out -= in */
/* Assumes in[i] < 2^119 */
static void widefelem_diff(widefelem out, const widefelem in)
{
static const widelimb two120 = ((widelimb) 1) << 120;
static const widelimb two120m64 = (((widelimb) 1) << 120) -
(((widelimb) 1) << 64);
static const widelimb two120m104m64 = (((widelimb) 1) << 120) -
(((widelimb) 1) << 104) - (((widelimb) 1) << 64);
/* Add 0 mod 2^224-2^96+1 to ensure out > in */
out[0] += two120;
out[1] += two120m64;
out[2] += two120m64;
out[3] += two120;
out[4] += two120m104m64;
out[5] += two120m64;
out[6] += two120m64;
out[0] -= in[0];
out[1] -= in[1];
out[2] -= in[2];
out[3] -= in[3];
out[4] -= in[4];
out[5] -= in[5];
out[6] -= in[6];
}
/* Subtract in mixed mode: out128 -= in64 */
/* in[i] < 2^63 */
static void felem_diff_128_64(widefelem out, const felem in)
{
static const widelimb two64p8 = (((widelimb) 1) << 64) +
(((widelimb) 1) << 8);
static const widelimb two64m8 = (((widelimb) 1) << 64) -
(((widelimb) 1) << 8);
static const widelimb two64m48m8 = (((widelimb) 1) << 64) -
(((widelimb) 1) << 48) - (((widelimb) 1) << 8);
/* Add 0 mod 2^224-2^96+1 to ensure out > in */
out[0] += two64p8;
out[1] += two64m48m8;
out[2] += two64m8;
out[3] += two64m8;
out[0] -= in[0];
out[1] -= in[1];
out[2] -= in[2];
out[3] -= in[3];
}
/* Multiply a field element by a scalar: out = out * scalar
* The scalars we actually use are small, so results fit without overflow */
static void felem_scalar(felem out, const limb scalar)
{
out[0] *= scalar;
out[1] *= scalar;
out[2] *= scalar;
out[3] *= scalar;
}
/* Multiply an unreduced field element by a scalar: out = out * scalar
* The scalars we actually use are small, so results fit without overflow */
static void widefelem_scalar(widefelem out, const widelimb scalar)
{
out[0] *= scalar;
out[1] *= scalar;
out[2] *= scalar;
out[3] *= scalar;
out[4] *= scalar;
out[5] *= scalar;
out[6] *= scalar;
}
/* Square a field element: out = in^2 */
static void felem_square(widefelem out, const felem in)
{
limb tmp0, tmp1, tmp2;
tmp0 = 2 * in[0]; tmp1 = 2 * in[1]; tmp2 = 2 * in[2];
out[0] = ((widelimb) in[0]) * in[0];
out[1] = ((widelimb) in[0]) * tmp1;
out[2] = ((widelimb) in[0]) * tmp2 + ((widelimb) in[1]) * in[1];
out[3] = ((widelimb) in[3]) * tmp0 +
((widelimb) in[1]) * tmp2;
out[4] = ((widelimb) in[3]) * tmp1 + ((widelimb) in[2]) * in[2];
out[5] = ((widelimb) in[3]) * tmp2;
out[6] = ((widelimb) in[3]) * in[3];
}
/* Multiply two field elements: out = in1 * in2 */
static void felem_mul(widefelem out, const felem in1, const felem in2)
{
out[0] = ((widelimb) in1[0]) * in2[0];
out[1] = ((widelimb) in1[0]) * in2[1] + ((widelimb) in1[1]) * in2[0];
out[2] = ((widelimb) in1[0]) * in2[2] + ((widelimb) in1[1]) * in2[1] +
((widelimb) in1[2]) * in2[0];
out[3] = ((widelimb) in1[0]) * in2[3] + ((widelimb) in1[1]) * in2[2] +
((widelimb) in1[2]) * in2[1] + ((widelimb) in1[3]) * in2[0];
out[4] = ((widelimb) in1[1]) * in2[3] + ((widelimb) in1[2]) * in2[2] +
((widelimb) in1[3]) * in2[1];
out[5] = ((widelimb) in1[2]) * in2[3] + ((widelimb) in1[3]) * in2[2];
out[6] = ((widelimb) in1[3]) * in2[3];
}
/* Reduce seven 128-bit coefficients to four 64-bit coefficients.
* Requires in[i] < 2^126,
* ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16 */
static void felem_reduce(felem out, const widefelem in)
{
static const widelimb two127p15 = (((widelimb) 1) << 127) +
(((widelimb) 1) << 15);
static const widelimb two127m71 = (((widelimb) 1) << 127) -
(((widelimb) 1) << 71);
static const widelimb two127m71m55 = (((widelimb) 1) << 127) -
(((widelimb) 1) << 71) - (((widelimb) 1) << 55);
widelimb output[5];
/* Add 0 mod 2^224-2^96+1 to ensure all differences are positive */
output[0] = in[0] + two127p15;
output[1] = in[1] + two127m71m55;
output[2] = in[2] + two127m71;
output[3] = in[3];
output[4] = in[4];
/* Eliminate in[4], in[5], in[6] */
output[4] += in[6] >> 16;
output[3] += (in[6] & 0xffff) << 40;
output[2] -= in[6];
output[3] += in[5] >> 16;
output[2] += (in[5] & 0xffff) << 40;
output[1] -= in[5];
output[2] += output[4] >> 16;
output[1] += (output[4] & 0xffff) << 40;
output[0] -= output[4];
/* Carry 2 -> 3 -> 4 */
output[3] += output[2] >> 56;
output[2] &= 0x00ffffffffffffff;
output[4] = output[3] >> 56;
output[3] &= 0x00ffffffffffffff;
/* Now output[2] < 2^56, output[3] < 2^56, output[4] < 2^72 */
/* Eliminate output[4] */
output[2] += output[4] >> 16;
/* output[2] < 2^56 + 2^56 = 2^57 */
output[1] += (output[4] & 0xffff) << 40;
output[0] -= output[4];
/* Carry 0 -> 1 -> 2 -> 3 */
output[1] += output[0] >> 56;
out[0] = output[0] & 0x00ffffffffffffff;
output[2] += output[1] >> 56;
/* output[2] < 2^57 + 2^72 */
out[1] = output[1] & 0x00ffffffffffffff;
output[3] += output[2] >> 56;
/* output[3] <= 2^56 + 2^16 */
out[2] = output[2] & 0x00ffffffffffffff;
/* out[0] < 2^56, out[1] < 2^56, out[2] < 2^56,
* out[3] <= 2^56 + 2^16 (due to final carry),
* so out < 2*p */
out[3] = output[3];
}
static void felem_square_reduce(felem out, const felem in)
{
widefelem tmp;
felem_square(tmp, in);
felem_reduce(out, tmp);
}
static void felem_mul_reduce(felem out, const felem in1, const felem in2)
{
widefelem tmp;
felem_mul(tmp, in1, in2);
felem_reduce(out, tmp);
}
/* Reduce to unique minimal representation.
* Requires 0 <= in < 2*p (always call felem_reduce first) */
static void felem_contract(felem out, const felem in)
{
static const int64_t two56 = ((limb) 1) << 56;
/* 0 <= in < 2*p, p = 2^224 - 2^96 + 1 */
/* if in > p , reduce in = in - 2^224 + 2^96 - 1 */
int64_t tmp[4], a;
tmp[0] = in[0];
tmp[1] = in[1];
tmp[2] = in[2];
tmp[3] = in[3];
/* Case 1: a = 1 iff in >= 2^224 */
a = (in[3] >> 56);
tmp[0] -= a;
tmp[1] += a << 40;
tmp[3] &= 0x00ffffffffffffff;
/* Case 2: a = 0 iff p <= in < 2^224, i.e.,
* the high 128 bits are all 1 and the lower part is non-zero */
a = ((in[3] & in[2] & (in[1] | 0x000000ffffffffff)) + 1) |
(((int64_t)(in[0] + (in[1] & 0x000000ffffffffff)) - 1) >> 63);
a &= 0x00ffffffffffffff;
/* turn a into an all-one mask (if a = 0) or an all-zero mask */
a = (a - 1) >> 63;
/* subtract 2^224 - 2^96 + 1 if a is all-one*/
tmp[3] &= a ^ 0xffffffffffffffff;
tmp[2] &= a ^ 0xffffffffffffffff;
tmp[1] &= (a ^ 0xffffffffffffffff) | 0x000000ffffffffff;
tmp[0] -= 1 & a;
/* eliminate negative coefficients: if tmp[0] is negative, tmp[1] must
* be non-zero, so we only need one step */
a = tmp[0] >> 63;
tmp[0] += two56 & a;
tmp[1] -= 1 & a;
/* carry 1 -> 2 -> 3 */
tmp[2] += tmp[1] >> 56;
tmp[1] &= 0x00ffffffffffffff;
tmp[3] += tmp[2] >> 56;
tmp[2] &= 0x00ffffffffffffff;
/* Now 0 <= out < p */
out[0] = tmp[0];
out[1] = tmp[1];
out[2] = tmp[2];
out[3] = tmp[3];
}
/* Zero-check: returns 1 if input is 0, and 0 otherwise.
* We know that field elements are reduced to in < 2^225,
* so we only need to check three cases: 0, 2^224 - 2^96 + 1,
* and 2^225 - 2^97 + 2 */
static limb felem_is_zero(const felem in)
{
limb zero, two224m96p1, two225m97p2;
zero = in[0] | in[1] | in[2] | in[3];
zero = (((int64_t)(zero) - 1) >> 63) & 1;
two224m96p1 = (in[0] ^ 1) | (in[1] ^ 0x00ffff0000000000)
| (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x00ffffffffffffff);
two224m96p1 = (((int64_t)(two224m96p1) - 1) >> 63) & 1;
two225m97p2 = (in[0] ^ 2) | (in[1] ^ 0x00fffe0000000000)
| (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x01ffffffffffffff);
two225m97p2 = (((int64_t)(two225m97p2) - 1) >> 63) & 1;
return (zero | two224m96p1 | two225m97p2);
}
static limb felem_is_zero_int(const felem in)
{
return (int) (felem_is_zero(in) & ((limb)1));
}
/* Invert a field element */
/* Computation chain copied from djb's code */
static void felem_inv(felem out, const felem in)
{
felem ftmp, ftmp2, ftmp3, ftmp4;
widefelem tmp;
unsigned i;
felem_square(tmp, in); felem_reduce(ftmp, tmp); /* 2 */
felem_mul(tmp, in, ftmp); felem_reduce(ftmp, tmp); /* 2^2 - 1 */
felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); /* 2^3 - 2 */
felem_mul(tmp, in, ftmp); felem_reduce(ftmp, tmp); /* 2^3 - 1 */
felem_square(tmp, ftmp); felem_reduce(ftmp2, tmp); /* 2^4 - 2 */
felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); /* 2^5 - 4 */
felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); /* 2^6 - 8 */
felem_mul(tmp, ftmp2, ftmp); felem_reduce(ftmp, tmp); /* 2^6 - 1 */
felem_square(tmp, ftmp); felem_reduce(ftmp2, tmp); /* 2^7 - 2 */
for (i = 0; i < 5; ++i) /* 2^12 - 2^6 */
{
felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);
}
felem_mul(tmp, ftmp2, ftmp); felem_reduce(ftmp2, tmp); /* 2^12 - 1 */
felem_square(tmp, ftmp2); felem_reduce(ftmp3, tmp); /* 2^13 - 2 */
for (i = 0; i < 11; ++i) /* 2^24 - 2^12 */
{
felem_square(tmp, ftmp3); felem_reduce(ftmp3, tmp);
}
felem_mul(tmp, ftmp3, ftmp2); felem_reduce(ftmp2, tmp); /* 2^24 - 1 */
felem_square(tmp, ftmp2); felem_reduce(ftmp3, tmp); /* 2^25 - 2 */
for (i = 0; i < 23; ++i) /* 2^48 - 2^24 */
{
felem_square(tmp, ftmp3); felem_reduce(ftmp3, tmp);
}
felem_mul(tmp, ftmp3, ftmp2); felem_reduce(ftmp3, tmp); /* 2^48 - 1 */
felem_square(tmp, ftmp3); felem_reduce(ftmp4, tmp); /* 2^49 - 2 */
for (i = 0; i < 47; ++i) /* 2^96 - 2^48 */
{
felem_square(tmp, ftmp4); felem_reduce(ftmp4, tmp);
}
felem_mul(tmp, ftmp3, ftmp4); felem_reduce(ftmp3, tmp); /* 2^96 - 1 */
felem_square(tmp, ftmp3); felem_reduce(ftmp4, tmp); /* 2^97 - 2 */
for (i = 0; i < 23; ++i) /* 2^120 - 2^24 */
{
felem_square(tmp, ftmp4); felem_reduce(ftmp4, tmp);
}
felem_mul(tmp, ftmp2, ftmp4); felem_reduce(ftmp2, tmp); /* 2^120 - 1 */
for (i = 0; i < 6; ++i) /* 2^126 - 2^6 */
{
felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);
}
felem_mul(tmp, ftmp2, ftmp); felem_reduce(ftmp, tmp); /* 2^126 - 1 */
felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); /* 2^127 - 2 */
felem_mul(tmp, ftmp, in); felem_reduce(ftmp, tmp); /* 2^127 - 1 */
for (i = 0; i < 97; ++i) /* 2^224 - 2^97 */
{
felem_square(tmp, ftmp); felem_reduce(ftmp, tmp);
}
felem_mul(tmp, ftmp, ftmp3); felem_reduce(out, tmp); /* 2^224 - 2^96 - 1 */
}
/* Copy in constant time:
* if icopy == 1, copy in to out,
* if icopy == 0, copy out to itself. */
static void
copy_conditional(felem out, const felem in, limb icopy)
{
unsigned i;
/* icopy is a (64-bit) 0 or 1, so copy is either all-zero or all-one */
const limb copy = -icopy;
for (i = 0; i < 4; ++i)
{
const limb tmp = copy & (in[i] ^ out[i]);
out[i] ^= tmp;
}
}
/******************************************************************************/
/* ELLIPTIC CURVE POINT OPERATIONS
*
* Points are represented in Jacobian projective coordinates:
* (X, Y, Z) corresponds to the affine point (X/Z^2, Y/Z^3),
* or to the point at infinity if Z == 0.
*
*/
/* Double an elliptic curve point:
* (X', Y', Z') = 2 * (X, Y, Z), where
* X' = (3 * (X - Z^2) * (X + Z^2))^2 - 8 * X * Y^2
* Y' = 3 * (X - Z^2) * (X + Z^2) * (4 * X * Y^2 - X') - 8 * Y^2
* Z' = (Y + Z)^2 - Y^2 - Z^2 = 2 * Y * Z
* Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed,
* while x_out == y_in is not (maybe this works, but it's not tested). */
static void
point_double(felem x_out, felem y_out, felem z_out,
const felem x_in, const felem y_in, const felem z_in)
{
widefelem tmp, tmp2;
felem delta, gamma, beta, alpha, ftmp, ftmp2;
felem_assign(ftmp, x_in);
felem_assign(ftmp2, x_in);
/* delta = z^2 */
felem_square(tmp, z_in);
felem_reduce(delta, tmp);
/* gamma = y^2 */
felem_square(tmp, y_in);
felem_reduce(gamma, tmp);
/* beta = x*gamma */
felem_mul(tmp, x_in, gamma);
felem_reduce(beta, tmp);
/* alpha = 3*(x-delta)*(x+delta) */
felem_diff(ftmp, delta);
/* ftmp[i] < 2^57 + 2^58 + 2 < 2^59 */
felem_sum(ftmp2, delta);
/* ftmp2[i] < 2^57 + 2^57 = 2^58 */
felem_scalar(ftmp2, 3);
/* ftmp2[i] < 3 * 2^58 < 2^60 */
felem_mul(tmp, ftmp, ftmp2);
/* tmp[i] < 2^60 * 2^59 * 4 = 2^121 */
felem_reduce(alpha, tmp);
/* x' = alpha^2 - 8*beta */
felem_square(tmp, alpha);
/* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
felem_assign(ftmp, beta);
felem_scalar(ftmp, 8);
/* ftmp[i] < 8 * 2^57 = 2^60 */
felem_diff_128_64(tmp, ftmp);
/* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
felem_reduce(x_out, tmp);
/* z' = (y + z)^2 - gamma - delta */
felem_sum(delta, gamma);
/* delta[i] < 2^57 + 2^57 = 2^58 */
felem_assign(ftmp, y_in);
felem_sum(ftmp, z_in);
/* ftmp[i] < 2^57 + 2^57 = 2^58 */
felem_square(tmp, ftmp);
/* tmp[i] < 4 * 2^58 * 2^58 = 2^118 */
felem_diff_128_64(tmp, delta);
/* tmp[i] < 2^118 + 2^64 + 8 < 2^119 */
felem_reduce(z_out, tmp);
/* y' = alpha*(4*beta - x') - 8*gamma^2 */
felem_scalar(beta, 4);
/* beta[i] < 4 * 2^57 = 2^59 */
felem_diff(beta, x_out);
/* beta[i] < 2^59 + 2^58 + 2 < 2^60 */
felem_mul(tmp, alpha, beta);
/* tmp[i] < 4 * 2^57 * 2^60 = 2^119 */
felem_square(tmp2, gamma);
/* tmp2[i] < 4 * 2^57 * 2^57 = 2^116 */
widefelem_scalar(tmp2, 8);
/* tmp2[i] < 8 * 2^116 = 2^119 */
widefelem_diff(tmp, tmp2);
/* tmp[i] < 2^119 + 2^120 < 2^121 */
felem_reduce(y_out, tmp);
}
/* Add two elliptic curve points:
* (X_1, Y_1, Z_1) + (X_2, Y_2, Z_2) = (X_3, Y_3, Z_3), where
* X_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1)^2 - (Z_1^2 * X_2 - Z_2^2 * X_1)^3 -
* 2 * Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2
* Y_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1) * (Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2 - X_3) -
* Z_2^3 * Y_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^3
* Z_3 = (Z_1^2 * X_2 - Z_2^2 * X_1) * (Z_1 * Z_2)
*
* This runs faster if 'mixed' is set, which requires Z_2 = 1 or Z_2 = 0.
*/
/* This function is not entirely constant-time:
* it includes a branch for checking whether the two input points are equal,
* (while not equal to the point at infinity).
* This case never happens during single point multiplication,
* so there is no timing leak for ECDH or ECDSA signing. */
static void point_add(felem x3, felem y3, felem z3,
const felem x1, const felem y1, const felem z1,
const int mixed, const felem x2, const felem y2, const felem z2)
{
felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, x_out, y_out, z_out;
widefelem tmp, tmp2;
limb z1_is_zero, z2_is_zero, x_equal, y_equal;
if (!mixed)
{
/* ftmp2 = z2^2 */
felem_square(tmp, z2);
felem_reduce(ftmp2, tmp);
/* ftmp4 = z2^3 */
felem_mul(tmp, ftmp2, z2);
felem_reduce(ftmp4, tmp);
/* ftmp4 = z2^3*y1 */
felem_mul(tmp2, ftmp4, y1);
felem_reduce(ftmp4, tmp2);
/* ftmp2 = z2^2*x1 */
felem_mul(tmp2, ftmp2, x1);
felem_reduce(ftmp2, tmp2);
}
else
{
/* We'll assume z2 = 1 (special case z2 = 0 is handled later) */
/* ftmp4 = z2^3*y1 */
felem_assign(ftmp4, y1);
/* ftmp2 = z2^2*x1 */
felem_assign(ftmp2, x1);
}
/* ftmp = z1^2 */
felem_square(tmp, z1);
felem_reduce(ftmp, tmp);
/* ftmp3 = z1^3 */
felem_mul(tmp, ftmp, z1);
felem_reduce(ftmp3, tmp);
/* tmp = z1^3*y2 */
felem_mul(tmp, ftmp3, y2);
/* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
/* ftmp3 = z1^3*y2 - z2^3*y1 */
felem_diff_128_64(tmp, ftmp4);
/* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
felem_reduce(ftmp3, tmp);
/* tmp = z1^2*x2 */
felem_mul(tmp, ftmp, x2);
/* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
/* ftmp = z1^2*x2 - z2^2*x1 */
felem_diff_128_64(tmp, ftmp2);
/* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
felem_reduce(ftmp, tmp);
/* the formulae are incorrect if the points are equal
* so we check for this and do doubling if this happens */
x_equal = felem_is_zero(ftmp);
y_equal = felem_is_zero(ftmp3);
z1_is_zero = felem_is_zero(z1);
z2_is_zero = felem_is_zero(z2);
/* In affine coordinates, (X_1, Y_1) == (X_2, Y_2) */
if (x_equal && y_equal && !z1_is_zero && !z2_is_zero)
{
point_double(x3, y3, z3, x1, y1, z1);
return;
}
/* ftmp5 = z1*z2 */
if (!mixed)
{
felem_mul(tmp, z1, z2);
felem_reduce(ftmp5, tmp);
}
else
{
/* special case z2 = 0 is handled later */
felem_assign(ftmp5, z1);
}
/* z_out = (z1^2*x2 - z2^2*x1)*(z1*z2) */
felem_mul(tmp, ftmp, ftmp5);
felem_reduce(z_out, tmp);
/* ftmp = (z1^2*x2 - z2^2*x1)^2 */
felem_assign(ftmp5, ftmp);
felem_square(tmp, ftmp);
felem_reduce(ftmp, tmp);
/* ftmp5 = (z1^2*x2 - z2^2*x1)^3 */
felem_mul(tmp, ftmp, ftmp5);
felem_reduce(ftmp5, tmp);
/* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
felem_mul(tmp, ftmp2, ftmp);
felem_reduce(ftmp2, tmp);
/* tmp = z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */
felem_mul(tmp, ftmp4, ftmp5);
/* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
/* tmp2 = (z1^3*y2 - z2^3*y1)^2 */
felem_square(tmp2, ftmp3);
/* tmp2[i] < 4 * 2^57 * 2^57 < 2^116 */
/* tmp2 = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 */
felem_diff_128_64(tmp2, ftmp5);
/* tmp2[i] < 2^116 + 2^64 + 8 < 2^117 */
/* ftmp5 = 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
felem_assign(ftmp5, ftmp2);
felem_scalar(ftmp5, 2);
/* ftmp5[i] < 2 * 2^57 = 2^58 */
/* x_out = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 -
2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
felem_diff_128_64(tmp2, ftmp5);
/* tmp2[i] < 2^117 + 2^64 + 8 < 2^118 */
felem_reduce(x_out, tmp2);
/* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out */
felem_diff(ftmp2, x_out);
/* ftmp2[i] < 2^57 + 2^58 + 2 < 2^59 */
/* tmp2 = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) */
felem_mul(tmp2, ftmp3, ftmp2);
/* tmp2[i] < 4 * 2^57 * 2^59 = 2^118 */
/* y_out = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) -
z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */
widefelem_diff(tmp2, tmp);
/* tmp2[i] < 2^118 + 2^120 < 2^121 */
felem_reduce(y_out, tmp2);
/* the result (x_out, y_out, z_out) is incorrect if one of the inputs is
* the point at infinity, so we need to check for this separately */
/* if point 1 is at infinity, copy point 2 to output, and vice versa */
copy_conditional(x_out, x2, z1_is_zero);
copy_conditional(x_out, x1, z2_is_zero);
copy_conditional(y_out, y2, z1_is_zero);
copy_conditional(y_out, y1, z2_is_zero);
copy_conditional(z_out, z2, z1_is_zero);
copy_conditional(z_out, z1, z2_is_zero);
felem_assign(x3, x_out);
felem_assign(y3, y_out);
felem_assign(z3, z_out);
}
/* select_point selects the |idx|th point from a precomputation table and
* copies it to out. */
static void select_point(const u64 idx, unsigned int size, const felem pre_comp[/*size*/][3], felem out[3])
{
unsigned i, j;
limb *outlimbs = &out[0][0];
memset(outlimbs, 0, 3 * sizeof(felem));
for (i = 0; i < size; i++)
{
const limb *inlimbs = &pre_comp[i][0][0];
u64 mask = i ^ idx;
mask |= mask >> 4;
mask |= mask >> 2;
mask |= mask >> 1;
mask &= 1;
mask--;
for (j = 0; j < 4 * 3; j++)
outlimbs[j] |= inlimbs[j] & mask;
}
}
/* get_bit returns the |i|th bit in |in| */
static char get_bit(const felem_bytearray in, unsigned i)
{
if (i >= 224)
return 0;
return (in[i >> 3] >> (i & 7)) & 1;
}
/* Interleaved point multiplication using precomputed point multiples:
* The small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[],
* the scalars in scalars[]. If g_scalar is non-NULL, we also add this multiple
* of the generator, using certain (large) precomputed multiples in g_pre_comp.
* Output point (X, Y, Z) is stored in x_out, y_out, z_out */
static void batch_mul(felem x_out, felem y_out, felem z_out,
const felem_bytearray scalars[], const unsigned num_points, const u8 *g_scalar,
const int mixed, const felem pre_comp[][17][3], const felem g_pre_comp[2][16][3])
{
int i, skip;
unsigned num;
unsigned gen_mul = (g_scalar != NULL);
felem nq[3], tmp[4];
u64 bits;
u8 sign, digit;
/* set nq to the point at infinity */
memset(nq, 0, 3 * sizeof(felem));
/* Loop over all scalars msb-to-lsb, interleaving additions
* of multiples of the generator (two in each of the last 28 rounds)
* and additions of other points multiples (every 5th round).
*/
skip = 1; /* save two point operations in the first round */
for (i = (num_points ? 220 : 27); i >= 0; --i)
{
/* double */
if (!skip)
point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
/* add multiples of the generator */
if (gen_mul && (i <= 27))
{
/* first, look 28 bits upwards */
bits = get_bit(g_scalar, i + 196) << 3;
bits |= get_bit(g_scalar, i + 140) << 2;
bits |= get_bit(g_scalar, i + 84) << 1;
bits |= get_bit(g_scalar, i + 28);
/* select the point to add, in constant time */
select_point(bits, 16, g_pre_comp[1], tmp);
if (!skip)
{
point_add(nq[0], nq[1], nq[2],
nq[0], nq[1], nq[2],
1 /* mixed */, tmp[0], tmp[1], tmp[2]);
}
else
{
memcpy(nq, tmp, 3 * sizeof(felem));
skip = 0;
}
/* second, look at the current position */
bits = get_bit(g_scalar, i + 168) << 3;
bits |= get_bit(g_scalar, i + 112) << 2;
bits |= get_bit(g_scalar, i + 56) << 1;
bits |= get_bit(g_scalar, i);
/* select the point to add, in constant time */
select_point(bits, 16, g_pre_comp[0], tmp);
point_add(nq[0], nq[1], nq[2],
nq[0], nq[1], nq[2],
1 /* mixed */, tmp[0], tmp[1], tmp[2]);
}
/* do other additions every 5 doublings */
if (num_points && (i % 5 == 0))
{
/* loop over all scalars */
for (num = 0; num < num_points; ++num)
{
bits = get_bit(scalars[num], i + 4) << 5;
bits |= get_bit(scalars[num], i + 3) << 4;
bits |= get_bit(scalars[num], i + 2) << 3;
bits |= get_bit(scalars[num], i + 1) << 2;
bits |= get_bit(scalars[num], i) << 1;
bits |= get_bit(scalars[num], i - 1);
ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
/* select the point to add or subtract */
select_point(digit, 17, pre_comp[num], tmp);
felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative point */
copy_conditional(tmp[1], tmp[3], sign);
if (!skip)
{
point_add(nq[0], nq[1], nq[2],
nq[0], nq[1], nq[2],
mixed, tmp[0], tmp[1], tmp[2]);
}
else
{
memcpy(nq, tmp, 3 * sizeof(felem));
skip = 0;
}
}
}
}
felem_assign(x_out, nq[0]);
felem_assign(y_out, nq[1]);
felem_assign(z_out, nq[2]);
}
/******************************************************************************/
/* FUNCTIONS TO MANAGE PRECOMPUTATION
*/
static NISTP224_PRE_COMP *nistp224_pre_comp_new()
{
NISTP224_PRE_COMP *ret = NULL;
ret = (NISTP224_PRE_COMP *) OPENSSL_malloc(sizeof *ret);
if (!ret)
{
ECerr(EC_F_NISTP224_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
return ret;
}
memset(ret->g_pre_comp, 0, sizeof(ret->g_pre_comp));
ret->references = 1;
return ret;
}
static void *nistp224_pre_comp_dup(void *src_)
{
NISTP224_PRE_COMP *src = src_;
/* no need to actually copy, these objects never change! */
CRYPTO_add(&src->references, 1, CRYPTO_LOCK_EC_PRE_COMP);
return src_;
}
static void nistp224_pre_comp_free(void *pre_)
{
int i;
NISTP224_PRE_COMP *pre = pre_;
if (!pre)
return;
i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP);
if (i > 0)
return;
OPENSSL_free(pre);
}
static void nistp224_pre_comp_clear_free(void *pre_)
{
int i;
NISTP224_PRE_COMP *pre = pre_;
if (!pre)
return;
i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP);
if (i > 0)
return;
OPENSSL_cleanse(pre, sizeof *pre);
OPENSSL_free(pre);
}
/******************************************************************************/
/* OPENSSL EC_METHOD FUNCTIONS
*/
int ec_GFp_nistp224_group_init(EC_GROUP *group)
{
int ret;
ret = ec_GFp_simple_group_init(group);
group->a_is_minus3 = 1;
return ret;
}
int ec_GFp_nistp224_group_set_curve(EC_GROUP *group, const BIGNUM *p,
const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
{
int ret = 0;
BN_CTX *new_ctx = NULL;
BIGNUM *curve_p, *curve_a, *curve_b;
if (ctx == NULL)
if ((ctx = new_ctx = BN_CTX_new()) == NULL) return 0;
BN_CTX_start(ctx);
if (((curve_p = BN_CTX_get(ctx)) == NULL) ||
((curve_a = BN_CTX_get(ctx)) == NULL) ||
((curve_b = BN_CTX_get(ctx)) == NULL)) goto err;
BN_bin2bn(nistp224_curve_params[0], sizeof(felem_bytearray), curve_p);
BN_bin2bn(nistp224_curve_params[1], sizeof(felem_bytearray), curve_a);
BN_bin2bn(nistp224_curve_params[2], sizeof(felem_bytearray), curve_b);
if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) ||
(BN_cmp(curve_b, b)))
{
ECerr(EC_F_EC_GFP_NISTP224_GROUP_SET_CURVE,
EC_R_WRONG_CURVE_PARAMETERS);
goto err;
}
group->field_mod_func = BN_nist_mod_224;
ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
err:
BN_CTX_end(ctx);
if (new_ctx != NULL)
BN_CTX_free(new_ctx);
return ret;
}
/* Takes the Jacobian coordinates (X, Y, Z) of a point and returns
* (X', Y') = (X/Z^2, Y/Z^3) */
int ec_GFp_nistp224_point_get_affine_coordinates(const EC_GROUP *group,
const EC_POINT *point, BIGNUM *x, BIGNUM *y, BN_CTX *ctx)
{
felem z1, z2, x_in, y_in, x_out, y_out;
widefelem tmp;
if (EC_POINT_is_at_infinity(group, point))
{
ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES,
EC_R_POINT_AT_INFINITY);
return 0;
}
if ((!BN_to_felem(x_in, &point->X)) || (!BN_to_felem(y_in, &point->Y)) ||
(!BN_to_felem(z1, &point->Z))) return 0;
felem_inv(z2, z1);
felem_square(tmp, z2); felem_reduce(z1, tmp);
felem_mul(tmp, x_in, z1); felem_reduce(x_in, tmp);
felem_contract(x_out, x_in);
if (x != NULL)
{
if (!felem_to_BN(x, x_out)) {
ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES,
ERR_R_BN_LIB);
return 0;
}
}
felem_mul(tmp, z1, z2); felem_reduce(z1, tmp);
felem_mul(tmp, y_in, z1); felem_reduce(y_in, tmp);
felem_contract(y_out, y_in);
if (y != NULL)
{
if (!felem_to_BN(y, y_out)) {
ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES,
ERR_R_BN_LIB);
return 0;
}
}
return 1;
}
static void make_points_affine(size_t num, felem points[/*num*/][3], felem tmp_felems[/*num+1*/])
{
/* Runs in constant time, unless an input is the point at infinity
* (which normally shouldn't happen). */
ec_GFp_nistp_points_make_affine_internal(
num,
points,
sizeof(felem),
tmp_felems,
(void (*)(void *)) felem_one,
(int (*)(const void *)) felem_is_zero_int,
(void (*)(void *, const void *)) felem_assign,
(void (*)(void *, const void *)) felem_square_reduce,
(void (*)(void *, const void *, const void *)) felem_mul_reduce,
(void (*)(void *, const void *)) felem_inv,
(void (*)(void *, const void *)) felem_contract);
}
/* Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL values
* Result is stored in r (r can equal one of the inputs). */
int ec_GFp_nistp224_points_mul(const EC_GROUP *group, EC_POINT *r,
const BIGNUM *scalar, size_t num, const EC_POINT *points[],
const BIGNUM *scalars[], BN_CTX *ctx)
{
int ret = 0;
int j;
unsigned i;
int mixed = 0;
BN_CTX *new_ctx = NULL;
BIGNUM *x, *y, *z, *tmp_scalar;
felem_bytearray g_secret;
felem_bytearray *secrets = NULL;
felem (*pre_comp)[17][3] = NULL;
felem *tmp_felems = NULL;
felem_bytearray tmp;
unsigned num_bytes;
int have_pre_comp = 0;
size_t num_points = num;
felem x_in, y_in, z_in, x_out, y_out, z_out;
NISTP224_PRE_COMP *pre = NULL;
const felem (*g_pre_comp)[16][3] = NULL;
EC_POINT *generator = NULL;
const EC_POINT *p = NULL;
const BIGNUM *p_scalar = NULL;
if (ctx == NULL)
if ((ctx = new_ctx = BN_CTX_new()) == NULL) return 0;
BN_CTX_start(ctx);
if (((x = BN_CTX_get(ctx)) == NULL) ||
((y = BN_CTX_get(ctx)) == NULL) ||
((z = BN_CTX_get(ctx)) == NULL) ||
((tmp_scalar = BN_CTX_get(ctx)) == NULL))
goto err;
if (scalar != NULL)
{
pre = EC_EX_DATA_get_data(group->extra_data,
nistp224_pre_comp_dup, nistp224_pre_comp_free,
nistp224_pre_comp_clear_free);
if (pre)
/* we have precomputation, try to use it */
g_pre_comp = (const felem (*)[16][3]) pre->g_pre_comp;
else
/* try to use the standard precomputation */
g_pre_comp = &gmul[0];
generator = EC_POINT_new(group);
if (generator == NULL)
goto err;
/* get the generator from precomputation */
if (!felem_to_BN(x, g_pre_comp[0][1][0]) ||
!felem_to_BN(y, g_pre_comp[0][1][1]) ||
!felem_to_BN(z, g_pre_comp[0][1][2]))
{
ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB);
goto err;
}
if (!EC_POINT_set_Jprojective_coordinates_GFp(group,
generator, x, y, z, ctx))
goto err;
if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
/* precomputation matches generator */
have_pre_comp = 1;
else
/* we don't have valid precomputation:
* treat the generator as a random point */
num_points = num_points + 1;
}
if (num_points > 0)
{
if (num_points >= 3)
{
/* unless we precompute multiples for just one or two points,
* converting those into affine form is time well spent */
mixed = 1;
}
secrets = OPENSSL_malloc(num_points * sizeof(felem_bytearray));
pre_comp = OPENSSL_malloc(num_points * 17 * 3 * sizeof(felem));
if (mixed)
tmp_felems = OPENSSL_malloc((num_points * 17 + 1) * sizeof(felem));
if ((secrets == NULL) || (pre_comp == NULL) || (mixed && (tmp_felems == NULL)))
{
ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_MALLOC_FAILURE);
goto err;
}
/* we treat NULL scalars as 0, and NULL points as points at infinity,
* i.e., they contribute nothing to the linear combination */
memset(secrets, 0, num_points * sizeof(felem_bytearray));
memset(pre_comp, 0, num_points * 17 * 3 * sizeof(felem));
for (i = 0; i < num_points; ++i)
{
if (i == num)
/* the generator */
{
p = EC_GROUP_get0_generator(group);
p_scalar = scalar;
}
else
/* the i^th point */
{
p = points[i];
p_scalar = scalars[i];
}
if ((p_scalar != NULL) && (p != NULL))
{
/* reduce scalar to 0 <= scalar < 2^224 */
if ((BN_num_bits(p_scalar) > 224) || (BN_is_negative(p_scalar)))
{
/* this is an unusual input, and we don't guarantee
* constant-timeness */
if (!BN_nnmod(tmp_scalar, p_scalar, &group->order, ctx))
{
ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB);
goto err;
}
num_bytes = BN_bn2bin(tmp_scalar, tmp);
}
else
num_bytes = BN_bn2bin(p_scalar, tmp);
flip_endian(secrets[i], tmp, num_bytes);
/* precompute multiples */
if ((!BN_to_felem(x_out, &p->X)) ||
(!BN_to_felem(y_out, &p->Y)) ||
(!BN_to_felem(z_out, &p->Z))) goto err;
felem_assign(pre_comp[i][1][0], x_out);
felem_assign(pre_comp[i][1][1], y_out);
felem_assign(pre_comp[i][1][2], z_out);
for (j = 2; j <= 16; ++j)
{
if (j & 1)
{
point_add(
pre_comp[i][j][0], pre_comp[i][j][1], pre_comp[i][j][2],
pre_comp[i][1][0], pre_comp[i][1][1], pre_comp[i][1][2],
0, pre_comp[i][j-1][0], pre_comp[i][j-1][1], pre_comp[i][j-1][2]);
}
else
{
point_double(
pre_comp[i][j][0], pre_comp[i][j][1], pre_comp[i][j][2],
pre_comp[i][j/2][0], pre_comp[i][j/2][1], pre_comp[i][j/2][2]);
}
}
}
}
if (mixed)
make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
}
/* the scalar for the generator */
if ((scalar != NULL) && (have_pre_comp))
{
memset(g_secret, 0, sizeof g_secret);
/* reduce scalar to 0 <= scalar < 2^224 */
if ((BN_num_bits(scalar) > 224) || (BN_is_negative(scalar)))
{
/* this is an unusual input, and we don't guarantee
* constant-timeness */
if (!BN_nnmod(tmp_scalar, scalar, &group->order, ctx))
{
ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB);
goto err;
}
num_bytes = BN_bn2bin(tmp_scalar, tmp);
}
else
num_bytes = BN_bn2bin(scalar, tmp);
flip_endian(g_secret, tmp, num_bytes);
/* do the multiplication with generator precomputation*/
batch_mul(x_out, y_out, z_out,
(const felem_bytearray (*)) secrets, num_points,
g_secret,
mixed, (const felem (*)[17][3]) pre_comp,
g_pre_comp);
}
else
/* do the multiplication without generator precomputation */
batch_mul(x_out, y_out, z_out,
(const felem_bytearray (*)) secrets, num_points,
NULL, mixed, (const felem (*)[17][3]) pre_comp, NULL);
/* reduce the output to its unique minimal representation */
felem_contract(x_in, x_out);
felem_contract(y_in, y_out);
felem_contract(z_in, z_out);
if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) ||
(!felem_to_BN(z, z_in)))
{
ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB);
goto err;
}
ret = EC_POINT_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx);
err:
BN_CTX_end(ctx);
if (generator != NULL)
EC_POINT_free(generator);
if (new_ctx != NULL)
BN_CTX_free(new_ctx);
if (secrets != NULL)
OPENSSL_free(secrets);
if (pre_comp != NULL)
OPENSSL_free(pre_comp);
if (tmp_felems != NULL)
OPENSSL_free(tmp_felems);
return ret;
}
int ec_GFp_nistp224_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
{
int ret = 0;
NISTP224_PRE_COMP *pre = NULL;
int i, j;
BN_CTX *new_ctx = NULL;
BIGNUM *x, *y;
EC_POINT *generator = NULL;
felem tmp_felems[32];
/* throw away old precomputation */
EC_EX_DATA_free_data(&group->extra_data, nistp224_pre_comp_dup,
nistp224_pre_comp_free, nistp224_pre_comp_clear_free);
if (ctx == NULL)
if ((ctx = new_ctx = BN_CTX_new()) == NULL) return 0;
BN_CTX_start(ctx);
if (((x = BN_CTX_get(ctx)) == NULL) ||
((y = BN_CTX_get(ctx)) == NULL))
goto err;
/* get the generator */
if (group->generator == NULL) goto err;
generator = EC_POINT_new(group);
if (generator == NULL)
goto err;
BN_bin2bn(nistp224_curve_params[3], sizeof (felem_bytearray), x);
BN_bin2bn(nistp224_curve_params[4], sizeof (felem_bytearray), y);
if (!EC_POINT_set_affine_coordinates_GFp(group, generator, x, y, ctx))
goto err;
if ((pre = nistp224_pre_comp_new()) == NULL)
goto err;
/* if the generator is the standard one, use built-in precomputation */
if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
{
memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
ret = 1;
goto err;
}
if ((!BN_to_felem(pre->g_pre_comp[0][1][0], &group->generator->X)) ||
(!BN_to_felem(pre->g_pre_comp[0][1][1], &group->generator->Y)) ||
(!BN_to_felem(pre->g_pre_comp[0][1][2], &group->generator->Z)))
goto err;
/* compute 2^56*G, 2^112*G, 2^168*G for the first table,
* 2^28*G, 2^84*G, 2^140*G, 2^196*G for the second one
*/
for (i = 1; i <= 8; i <<= 1)
{
point_double(
pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2],
pre->g_pre_comp[0][i][0], pre->g_pre_comp[0][i][1], pre->g_pre_comp[0][i][2]);
for (j = 0; j < 27; ++j)
{
point_double(
pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2],
pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]);
}
if (i == 8)
break;
point_double(
pre->g_pre_comp[0][2*i][0], pre->g_pre_comp[0][2*i][1], pre->g_pre_comp[0][2*i][2],
pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]);
for (j = 0; j < 27; ++j)
{
point_double(
pre->g_pre_comp[0][2*i][0], pre->g_pre_comp[0][2*i][1], pre->g_pre_comp[0][2*i][2],
pre->g_pre_comp[0][2*i][0], pre->g_pre_comp[0][2*i][1], pre->g_pre_comp[0][2*i][2]);
}
}
for (i = 0; i < 2; i++)
{
/* g_pre_comp[i][0] is the point at infinity */
memset(pre->g_pre_comp[i][0], 0, sizeof(pre->g_pre_comp[i][0]));
/* the remaining multiples */
/* 2^56*G + 2^112*G resp. 2^84*G + 2^140*G */
point_add(
pre->g_pre_comp[i][6][0], pre->g_pre_comp[i][6][1],
pre->g_pre_comp[i][6][2], pre->g_pre_comp[i][4][0],
pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2],
0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
pre->g_pre_comp[i][2][2]);
/* 2^56*G + 2^168*G resp. 2^84*G + 2^196*G */
point_add(
pre->g_pre_comp[i][10][0], pre->g_pre_comp[i][10][1],
pre->g_pre_comp[i][10][2], pre->g_pre_comp[i][8][0],
pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
pre->g_pre_comp[i][2][2]);
/* 2^112*G + 2^168*G resp. 2^140*G + 2^196*G */
point_add(
pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1],
pre->g_pre_comp[i][12][2], pre->g_pre_comp[i][8][0],
pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
0, pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1],
pre->g_pre_comp[i][4][2]);
/* 2^56*G + 2^112*G + 2^168*G resp. 2^84*G + 2^140*G + 2^196*G */
point_add(
pre->g_pre_comp[i][14][0], pre->g_pre_comp[i][14][1],
pre->g_pre_comp[i][14][2], pre->g_pre_comp[i][12][0],
pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2],
0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
pre->g_pre_comp[i][2][2]);
for (j = 1; j < 8; ++j)
{
/* odd multiples: add G resp. 2^28*G */
point_add(
pre->g_pre_comp[i][2*j+1][0], pre->g_pre_comp[i][2*j+1][1],
pre->g_pre_comp[i][2*j+1][2], pre->g_pre_comp[i][2*j][0],
pre->g_pre_comp[i][2*j][1], pre->g_pre_comp[i][2*j][2],
0, pre->g_pre_comp[i][1][0], pre->g_pre_comp[i][1][1],
pre->g_pre_comp[i][1][2]);
}
}
make_points_affine(31, &(pre->g_pre_comp[0][1]), tmp_felems);
if (!EC_EX_DATA_set_data(&group->extra_data, pre, nistp224_pre_comp_dup,
nistp224_pre_comp_free, nistp224_pre_comp_clear_free))
goto err;
ret = 1;
pre = NULL;
err:
BN_CTX_end(ctx);
if (generator != NULL)
EC_POINT_free(generator);
if (new_ctx != NULL)
BN_CTX_free(new_ctx);
if (pre)
nistp224_pre_comp_free(pre);
return ret;
}
int ec_GFp_nistp224_have_precompute_mult(const EC_GROUP *group)
{
if (EC_EX_DATA_get_data(group->extra_data, nistp224_pre_comp_dup,
nistp224_pre_comp_free, nistp224_pre_comp_clear_free)
!= NULL)
return 1;
else
return 0;
}
#else
static void *dummy=&dummy;
#endif
| N4m3 |
5!z3 |
L45t M0d!f!3d |
0wn3r / Gr0up |
P3Rm!55!0n5 |
0pt!0n5 |
| .. |
-- |
December 16 2014 08:29:48 |
0 / 0 |
0755 |
|
| | | | | |
| Makefile |
14.23 KB |
April 07 2014 16:55:29 |
0 / 0 |
0664 |
|
| Makefile.save |
14.23 KB |
April 07 2014 16:55:28 |
0 / 0 |
0664 |
|
| ec.h |
45.325 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| ec2_mult.c |
12.142 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| ec2_oct.c |
10.795 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| ec2_smpl.c |
18.676 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| ec_ameth.c |
15.247 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| ec_asn1.c |
34.418 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| ec_check.c |
3.99 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| ec_curve.c |
88.115 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| ec_cvt.c |
5.696 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| ec_err.c |
15.668 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| ec_key.c |
13.212 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| ec_lcl.h |
21.397 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| ec_lib.c |
25.051 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| ec_mult.c |
23.106 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| ec_oct.c |
6.611 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| ec_pmeth.c |
7.947 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| ec_print.c |
5.401 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| eck_prn.c |
9.667 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| ecp_mont.c |
8.346 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| ecp_nist.c |
6.418 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| ecp_nistp224.c |
51.553 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| ecp_nistp256.c |
63.396 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| ecp_nistp521.c |
61.758 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| ecp_nistputil.c |
7.655 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| ecp_oct.c |
11.048 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| ecp_smpl.c |
32.362 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| ectest.c |
49.206 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
$.' ",#(7),01444'9=82<.342ÿÛ C
2!!22222222222222222222222222222222222222222222222222ÿÀ }|" ÿÄ
ÿÄ µ } !1AQa "q2‘¡#B±ÁRÑð$3br‚
%&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyzƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚáâãäåæçèéêñòóôõö÷øùúÿÄ
ÿÄ µ w !1AQ aq"2B‘¡±Á #3RðbrÑ
$4á%ñ&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz‚ƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚâãäåæçèéêòóôõö÷øùúÿÚ ? ÷HR÷j¹ûA <̃.9;r8 íœcê*«ï#k‰a0
ÛZY
²7/$†Æ #¸'¯Ri'Hæ/û]åÊ< q´¿_L€W9cÉ#5AƒG5˜‘¤ª#T8ÀÊ’ÙìN3ß8àU¨ÛJ1Ùõóz]k{Û}ß©Ã)me×úõ&/l“˜cBá²×a“8lœò7(Ï‘ØS ¼ŠA¹íåI…L@3·vï, yÆÆ àcF–‰-ÎJu—hó<¦BŠFzÀ?tãúguR‹u#
‡{~?Ú•£=n¾qo~öôüô¸¾³$õüÑ»jò]Mä¦
>ÎÈ[¢à–?) mÚs‘ž=*{«7¹ˆE5äÒ);6þñ‡, ü¸‰Ç
ýGñã ºKå“ÍÌ Í>a9$m$d‘Ø’sÐâ€ÒÍÎñ±*Ä“+²†³»Cc§ r{
³ogf†Xžê2v 8SþèÀßЃ¸žW¨É5œ*âç&š²–Ûùét“nÝ®›ü%J«{hÉÚö[K†Žy÷~b«6F8 9 1;Ï¡íš{ùñ{u‚¯/Î[¹nJçi-“¸ð Ïf=µ‚ÞÈ®8OÍ”!c H%N@<ŽqÈlu"š…xHm®ä<*ó7•…Á
Á#‡|‘Ó¦õq“êífÛüŸ•oNÚ{ËFý;– ŠÙ–!½Òq–‹væRqŒ®?„ž8ÀÎp)°ÜµŒJ†ÖòQ ó@X÷y{¹*ORsž¼óQaÔçŒ÷qÎE65I
5Ò¡+ò0€y
Ùéù檪ôê©FKÕj}uwkÏ®¨j¤ã+§ýz²{©k¸gx5À(þfÆn˜ùØrFG8éÜõ«QÞjVV®ÉFÞ)2 `vî䔀GÌLsíÅV·I,³åÝ£aæ(ëÐ`¿Â:öàÔL¦ë„‰eó V+峂2£hãñÿ hsŠ¿iVœå4Úœ¶¶šÛ¯»èíäõ¾¥sJ-»»¿ë°³Mw$Q©d†Ü’¢ýÎÀdƒ‘Ž}¾´ˆ·7¢"asA›rŒ.v@ ÞÇj”Y´%Š–·–5\ܲõåË2Hã×°*¾d_(˜»#'<ŒîØ1œuþ!ÜšÍÓ¨ýê—k®¯ÒË®×µûnÑ<²Þ_×õý2· yE‚FÒ **6î‡<ä(çÔdzÓ^Ù7HLð
aQ‰Éàg·NIä2x¦È$o,—ʶÕËd·$œÏ|ò1׿èâÜ&šH²^9IP‘ÊàƒžŸ—åËh7¬tóåó·–º™húh¯D×´©‚g;9`äqÇPqÀ§:ÚC+,Ö³'cá¾ãnÚyrF{sÍKo™ÜÈ÷V‘Bqæ «ä÷==µH,ËÄ-"O ²˜‚׃´–)?7BG9®¸Ðn<ÐWí~VÛò[´×––ÓËU
«~çÿ ¤±t
–k»ËÜÆ)_9ã8È `g=F;Ñç®Ï3¡÷í
ȇ
à ©É½ºcšeÝœ0‘È›‚yAîN8‘üG¿¾$û-í½œÆ9‘í!ˆ9F9çxëøž*o_žIÆÖZò¥ÓºVùöõ¿w¦Ýˆæ•´ÓYÄ®³ËV£êƒæõç?áNòîn.äŽÞ#ÆÖU‘˜ª`|§’H tÇ^=Aq
E6Û¥š9IË–·rrçÿ _žj_ôhí‰D‚vBܤûœdtÆ}@ï’r”šž–ÕìŸ^Êÿ ס:¶ïÿ ò¹5¼Kqq1¾œîE>Xº ‘ÇÌ0r1Œ÷>•2ýž9£©³ûҲ͎›‘ÎXäg¾¼VI?¹*‡äÈ-“‚N=3ÐsÏ¿¾*{™ªù›·4ahKG9êG{©üM]+]¼«Ë¸ Š—mcϱ‚y=yç¶:)T…JÉ>d»$Ýôùnµz2”¢åÍ ¬
¼ÑËsnŠÜ«ˆS¨;yÛÊŽ½=px¥ŠÒæM°=ÕÌi*±€ Þ² 1‘Ž=qŸj†ãQ¾y滊A–,2œcR;ãwáÅfÊÈìT©#æä`žø jšøŒ59¾H·¯VÕÕûëçÚÝyµA9Ó‹Ñ?Çúþºš—QÇ
ÔvòßNqù«¼!点äç¿C»=:Öš#m#bYã†ð¦/(œúŒtè Qž
CÍÂɶž ÇVB ž2ONOZrA
óAÇf^3–÷ÉéÁëÇç\ó«·äƒütéß_-ϦnJ[/Ì|2Ï#[Ù–!’,Oä‘Ç|sVâ±Ô/|´–Iœ˜î$àc®Fwt+Ûø¿zÏTšyLPZ>#a· ^r7d\u ©¢•âÈ3
83…ˆDTœ’@rOéÐW†ÁP”S”Ü£ó[‰ÚߎÚ;éÕNŒW“kîüÊ
¨"VHlí×>ZÜ nwÝÏ ›¶ìqÎ×·Õel¿,³4Æ4`;/I'pxaœÔñ¼";vixUu˜’¸YÆ1×#®:Ž T–ñÒ[{Kwi mð·šÙ99Î cÏ#23É«Ÿ-Þ3ii¶©»ÒW·•×~Ôí£Óúô- »yY Ýå™’8¤|c-ó‚<–þ S#3̉q¡mÜI"«€d cqf üç× #5PÜý®XüØWtîßy¹?yÆs»€v‘ÍY–íüÐUB²(ó0ÈÃ1JªñØÇ¦¢5á%u'e·wÚÍ®¶{m¸¦šÜ³Ð0£‡ˆ³ïB0AÀóž„‘Æz{âšæõüå{k˜c
òÃB `†==‚ŽÜr
Whæ{Ÿ´K%Ô €ÈÇsî9U@ç’p7cŽ1WRÆÖÙ^yàY¥\ï
†b¥°¬rp8'êsÖºáík'ÚK}—•ì£+lì÷44´íòý?«Ö÷0¤I"Ú³.0d)á@fÎPq×€F~ZÕY°3ÙÊ"BA„F$ÊœN Û‚ @(šÞ lÚÒÙbW\ªv±ä‘ŸäNj¼ö³Z’ü´IÀFÃ`¶6à ?!
NxÇÒ©Ò†Oª²½’·ŸM¶{êºjÚqŒ©®èþ
‰ ’&yL%?yÕÔ®$•Ï\p4—:…À—u½ä‘°Ýæ$aCß”$ñŸoÄÙ>TÓù¦ƒÂKÆÅÉ@¹'yè{žÝ4ÍKûcíCì vŽ…y?]Ol©Ê|Íê¾Þ_;üÿ Ï¡Rçånÿ rÔ’[m²»˜¡Ž4ùDŽ›Ë) $’XxËëšY8¹i•†Á!‘þpJ•V^0
Œ±õèi²Å²en%·„†8eeù²Yˆ,S†=?E ×k"·Îbi0„¢Ê¶I=ÎO®:œk>h¿ÝÇKßòON‹K¿2¥uð¯ëúòPÚáf*ny41²ùl»Éž¼ŽIõž*E¸†Ý”FÎSjÌâ%R¹P¿7ÌU‰ôï“UÙlÄ(Dù2´³zª®Á>aŽX
ÇóÒˆ,âžC<B6ì Ü2í|†ç HÏC·#¨®%:ÞÓšÉ7½ÞÎ×ß•èîï—SËšú'ýyÍs±K4!Ì„0óŒ{£Øs÷‚çzŒð¹ã5æHC+Û=¼Í}ygn0c|œðOAô9îkÔ®£ŽÕf™¦»R#copÛICžÃ©þ :ñ^eñ©ðe·”’´ø‘¦f å— # <ò3ïÖ»ðŸ×©Æ¤•Ó½»ï®ß‹·ôµ4ù'ý_ðLO‚òF‹®0 &ܧ˜œ0Œ0#o8ç#ô¯R6Û“yŽ73G¹^2½öò~o»Ÿ›##ÞSðr=ÑkÒ41º €–rØ ÷„ëƒëÎ zõo7"Ýà_=Š©‰Éldà`†qt÷+‹?æxù©%m,ö{.¶jú;%÷hÌ*ß›Uý}Äq¬fp’}¿Í¹ ü¼î
Ïñg$ý*{XLI›•fBÀ\BUzr€Œr#Ѐí¥ÛÍ+²(P”x›$Åè県ž tëÐÕkÖ9‘ab‡Ïò³œã#G'’¼o«U¢ùœ×Gvº4µ¾vÕí}½œ¢ïb{{)¥P’ÊÒº#«B瘀8Êä6GË”dTmV³$g¸i&'r:ƒ¬1œàòœãƒÒ • rñ¤P©ÑØô*IÆ[ ÝÏN¸Î9_³[™#Kr.Fí¤í*IÁ?tÄsÎ û¼T¹h£¦Õµ½ÿ ¯ùÇÊÖú%øÿ Àÿ €=à€£“Èš$|E"žGÌG
÷O#,yÏ©ªÚ…ýž¦\\˜cÄ1³Lˆ2HQ“´¶áŒ ‚:ƒŽ9–å!Š–Í‚É¾F''‘÷yÇNüûãëpÆ|=~¢D•䵕vn2„sÓžGLë
IUP´Uíw®Ú-/mm£²×Ì–ìíeý]? øÑüa¨ÞZÏeki,q‰c10PTpAÜÀg%zSß°2Ĥ¡U]®ØŠÜçžI;€èpx?_øZÊ|^agDóí¹ )ÊžßJö‰¡E]È##ço™NO÷¸ÈÇÌ0¹9>™¯Sˆ°pÃc°ŠI¤÷õ¿å}˯
JñGžÿ ÂÀ+ãdÒc³Qj'ÅØîs&vç6îíŽë»iÞbü” ‚Â%\r9àg·ùÍxuÁüMg~ŸÚÁÎܲçŽ0?*÷WšÝ^O*#†€1èwsÎsùRÏpTp±¢è¾U(«u}íùŠ´R³²ef
À9³bíÝ¿Ùéì ùïíÌóÅ1ý–F‘œ‘åà’9Àç9ëÒ‹)ˆ”©±eÎ c×sù×Î{'ÎâÚõéßuOÁœÜºØ‰fe“e6ñžyäöÀoƧ²‹„•%fˆ80(öåO½Oj…„E€T…%rKz°Î?.;{šXÙ‡ŸeUÚd!üx9þtã%wO_øoòcM-
j–ÒHX_iK#*) ž@Ž{ôǽBd¹‰RÝn–ê0«7ˆìyÀ÷Í@¬Ì¢³³’ 9é÷½?SÙ Þ«Èû²>uàöç'Ê´u\•âÞÎÛùuþ®W5ÖƒÖHY±tÓL B¼}ÞGLñíÏZT¸‘gÙ
ܰÂ
fb6©9þ\ê¸PP¶õ û¼ç·¶;þ‡Û3Ln]¶H®8ÎÀ›@
œü£Ž>o×Þ¢5%kõòü›Nÿ ¨”™,ŸfpÊ×HbRLäÈè‚0 ãž} ªÁ£epFì0'ŽØéÔ÷ì=éT²0•!…Îzt9ç¾?”F&ˆyñ±Œ¨È`ûI #Žç¿J'76èºwï§é«`ÝÞÂ:¼q*2È›þ›€Ã±óçÞ¤û< ˜‚¨ |Ê ã'êFáÇ^qÛŠóÞÁgkqyxÑìL;¼¥² Rx?‡¯Y7PŽwnù¶†û¾Ü·.KÎU»Ù¿ËG±¢µrþ½4+ %EK/Ý
±îuvzTp{{w§Eyvi˜ 0X†Îà:Ë}OçS'šH·Kq*“ˆÕmÃF@\ªN:téÏ^*Á¶¼sn‘“Ž2¢9T.½„\ýò@>˜7NFïNRÓ·wèôßEÕua'¬[þ¾cö¡ÌOæ¦âÅŠ². Ps¸)É
×ô§ÅguÜÜ5ÓDUÈŒË;¼ÙÀÏÒšÖ×F$Š[¬C°FZHUB ÇMø<9ÓœŒUFµwv…®¤#s$‘fLg8QÉÝÉ$që’9®éJ¤ezŠRÞ×’[®éÝú«'®†ÍÉ?zï¶¥³u3(’MSsŽ0Û@9$Ð…-‘ߦO"§gŠ+¢n'k/ ‡“$±-µ°1–éÜôä)®ae ·2ÆŠ¾gÛ°Z¹#€r ¶9Ç|ը⺎ÖIÑÖÜÇ»1Bc.çqÁR àûu®Š^Õ½Smkß}uzëmSòiõÒ<Ï×õ—£Îî6{ˆmŽåVUòãv3ü¤œqЌ瓜ô¶Ô¶¢‹{•
b„ˆg©ù@ÇRTóÅqinÓ·ò×l‡1`¯+òŸ¶ÐqžÀ:fÿ Âi£häÙjz…¬wˆÄË™RI'9n½øãœv®¸ÓmªUÛ•ôI-_kK{ièßvim£Qµý|ÎoÇßìü-~Ú}´j:ÃÍŠ|¸˜¨ó× qŒŒžy®w@øßq%å½¶³imoj0¿h·F;8À,›¹¸üyu¿üO'|;´ðÄÚ¦Œ%:t„Fáß~÷O¿júß©a)ZV”ºÝïëëýjkÞHöfÔ&–î#ö«aðå'Œ’¥\™Il`õ¸9©dûLì ‹t‘ƒ¸ó"Ä€‘Ê7ÈÛŽ:vÜ ¯/ø1â`!»Ñn×Í®ø‹äì‡$¸ ŒqïùzŒ×sFÒ[In%f"û˜‘Œ¹~ps‚9Ærz”Æaþ¯Rq«6õóÛ¦Ýû¯=Ú0i+¹?ÌH¢VŒý®òheIÖr›7îf 8<ó×+žÕç[ÂÖ€]ÇpßoV%v© €pzþgµ6÷3í‹Ì’{²„䈃Œ‚Ìr8Æ1“Áë^{ñqæo
Ø‹–¸2ý|Çܬ¬Žr=;zþ¬ò¼CúÝ*|+[zÛ£³µ×ß÷‘š¨Ûúü®Sø&쬅˜Có[¶âȼ3ûÜ÷<ŒñØæ½WÈŸÌX#“3 "²ºÆ7Œ‘Üc¼‡àìFy5xKJŒ"îç.r@ï×Þ½Ä-ÿ þ“}ª}’*Þ!,Fm¸Î@†9b?1W{Yæ3„`Ú¼VõŠÚÛ_kùöG.mhÎñ ôíhí§Ô$.ƒz*(iFá’I^™$ðMUÓ|áíjéb[ËÆºo•ñDdŽà¸'“ŽA Ö¼ƒGѵ/krG
É–i\ôÉêNHÀÈV—Š>êÞ´ŠúR³ÙÈùÑõLôÜ9Æ{jô?°°Kýš¥WíZ¿V—m6·E}{X~Æ?
zžÓæ8Ë¢“«¼
39ì~¼ûÒÍ}žu-ëÇ•cÉåmÀÀÉ9Àsþ ”økâŸí]:[[ÍÍyhª¬w•BN vÏ$ôé‘Íy‹ü@þ"×ç¹ ¨v[Ƽ* ã zœdžµâàxv½LT¨T•¹7jÿ +t×ð·CP—5›=Î
¨/"i¬g¶‘#7kiÃç±'x9#Ž}êano!òKD‘ílï”('¿SÔð?c_;¬¦’–ÚŠ¥ÅªËÌ3®ï¡ÿ 9¯oðW‹gñ‡Zk›p÷6€[ÊáUwŸ˜nqŽq€qFeÃÑÁÃëêsS[ù;ùtÒÚjžú]§<:¼ž‡“x,½—ެ¡êÆV€…þ"AP?ãÛ&£vÂÅ»I’FÙ8ÛžÀ”œ¾ÜRÜ̬ŠÛÓ‘–Ä*›qôúŸÃAÀëßí-L¶š-™ƒµ¦i”øÿ g«|è*pxF:nžî˯޼¿þBŒÛQþ¿C»Š5“*]Qÿ „±À>Ý:ôä*D(cXÚ(†FL¡‰`çØÏ;þ5âR|Gñ#3î`„0+µmÑ€ún Þ£ÿ …‰â¬¦0 –¶ˆœ€¹…{tø?ʯ(_çþ_Š5XY[¡Ù|Q¿ú
µŠ2︛sO* Бÿ ×â°<+à›MkÂ÷š…ij
·Ü–ˆ«ò‚?ˆœúäc½øåunû]¹Iïåè› ç ¯[ð&©¥Ýxn;6>}²’'`IË0ÁèN}zö5éâ©âr\¢0¥ñs^Ml¿«%®ýM$¥F•–ç‘Øj÷Ze¦£k
2¥ô"FqÀ`„~5Ùü+Ò¤—QºÕ†GÙ—Ë‹ çqä°=¶ÏûÔÍcá¶¡/ˆ¤[ý†iK ™°"ó•Æp;`t¯MÑt}+@²¶Óí·Ídy’3mÕË‘’zc€0 íyÎq„ž ¬4×5[_]Rë{]ì¬UZ±p÷^åØÞÈ[©&OúÝÛ‚‚s÷zžIïßó btÎΪ\ya¾U;C¤t*IÎFF3Џ™c
1žYD…U° êÄàõë\oŒ¼a ‡c[[GŽãP‘7 â znÈ>Ãü3ñ˜,=lUENŒäô¾ÚÀÓ[_ð9 œ´JçMy©E¢Àí}x,bpAó¦üdcûŒW9?Å[Há$¿¹pÄ™#^9O88©zO=«Ë!µÖüY¨³ªÍy9ûÒ1 úôÚ»M?àô÷«ÞëÖ–ÙMÌ#C&ßnJ“Üp#Ђ~²†G–àíekϵío»_žŸuΨQ„t“ÔÛ²øáû›´W6»Øoy FQÎr $Óõìk¬„‹ïÞÚ¼sÆíòÉ67\míÎyF¯ð¯TÓã’K;ë[ð·ld«7üyíšÉ𯊵 êáeYžÏq[«&vMÀðßFà}p3ÅgW‡°8ØßVín›þšõ³¹/ ü,÷ií|’‘´R,®ŠÉ‡W“Ž1ØöëÓ¾xžÖÞ¹xÞݬXZGù\’vŒž˜ÆsØúÓïí&ÒÒ{]Qž9£Ê¡ù·ÄÀ»¶áHäž™5—ìö« -&ù¤U<±ÉÆA>½ý+æg
jžö륢þNÛ=÷JÖÛfdÔ õýËúû‹ÓØB²¬fInZ8wÌÉЮ~aƒÎ=3ìx‚+/¶äÁlŠ‚?™Æü#8-œ\pqTZXtè%»»&ÚÝ#´ŠðÜžã§Í’¼{p·ß{m>ÞycP¨’¼¢0ú(Rƒë^Ž ñó¼(»y%m´ÕÙ}ÊûékB1¨þÑ®,#Q)ó‡o1T©ÜÃ*Ž‹‚yö<b‰4×H€“ìÐ.
¤²9ÌŠ>„Žãøgšñ
¯Š~)¸ßå\ÛÛoBŒa·L²œg$‚Iã¯ZÈ—Æ~%”äë—È8â)Œcƒ‘Âàu9¯b%)ÞS²¿Ïïÿ 4Öºù}Z/[H%¤vÉ#Ì’x§†b
© ³´tÜ{gn=iï%õªÇç]ܧ—!åw„SÓp ·VÈÏ¡?5Âcâb¥_ĤŠz¬—nàþÖΟñKÄöJé=ÌWèêT‹¸÷qÎჟ•q’zWUN«N/ØO^Ÿe|í¾©k{üõ4öV^ïù~G¹êzÂèº|·÷×[’Þ31†rpjg·n
Æ0Ý}kåË‹‰nîe¹ËÍ+™ÏVbrOç]'‰¼o®xÎh`¹Ç*±ÙÚ!T$d/$žN>¼WqᯅZ9ÑÒO\ÜÛê1o&,-z ~^NCgNÕéá)ÒÊ©7‰¨¯'Õþ¯þ_¿Ehîþóâ €ï¬uÛûý*ÎK9ä.â-öv<²‘×h$àãúW%ö¯~«g-ÕõÀàG~>Zú¾Iš+(šM³ Û#9äl%ðc¬ ûÝ xÖKG´x®|¸¤Ï™O:Ê8Ã’qÉcÔä‚yÇNJyËŒTj¥&µOmztjÿ ?KëaµÔù¯áýóXøãLeb¾tžAÇû`¨êGBAõ¾•:g˜’ù·,þhÀ`¬qÜ` e·~+å[±ý“âYÄjWì—µHé±ø?Nõô>½âX<5 Ç©ÏѼM¶8cܪXŽÉ^r?¼IróÈS•ZmÇ›™5»òÚÚ7ïu«&|·÷•Ά
>[©ÞXHeS$Œyà€ ÷ù²:ò2|óãDf? Z¼PD¶ÓßC(xÆ0|©ßR;ôMsÿ µ´ÔVi¬,͹›Ìxâi˜`¹,GAéÇlV§ÄýF×Yø§ê–‘:Ã=ò2³9n±ÉžØÏ@yÎWžæ±Ãàe„ÄÒN ]ïòêìú_Go'¦ŽÑ’_×õЯðR66þ!›ÑÄ gFMÙ— äžäqôÈ;ÿ eX<#%»Aö‰ãR¤ Í”Ž¹È G&¹Ÿƒ&á?¶Zˆ±keRè Kãnz·ãŠÕøÄÒÂ9j%@®×q±ÜŒý[õ-É$uíè&¤¶9zÇï·Oøï®ÄJKšÖìdü"µˆ[jײÎc;ã…B(g<9nàȯG½µŸPÓ.´Éfâ¼FŽP
31 ‘ÏR}<3šä~
Ã2xVöî Dr
Ç\›}Ý#S÷ÈÀëŽHÆI®à\OçKuäI¹†ó(”—GWî ñ³¹¸æ2¨›‹ºÚû%¾ýÖ_3ºNú¯ëúì|ÕÅÖ‰}ylM’ZËîTÿ á[ðÐñ/ˆ9Àû
¸ón3 Mòd‘÷ döª^.Êñް›BâîNp>cëÏçÍzïÃôÏ
YÍ%ª¬·ãÏ-*9ÜÂãhéŒc¾dÈêú¼Ë,. VŠ÷çeÿ n/¡¼äãõâ=‹xGQKx”|¹bÌŠD@2Œ 8'Ž àúƒŽ+áDÒ&¡¨"Œ§–Žr22 Ç·s]ŸÄ‹«ð%ÚÄ<¹ä’(×{e›HÀqÁç©Ç½`üŽÚõK饚9ƒÄ±€<–úƒú~ çðñO#Í%iKKlµ¦¾F)'Iê¬Î+Ç(`ñ¾£œdÈ’`™ºcßéé^ÿ i¸”Û\ý¡æhÔB«aq¸}ãÀÆ:ÜWƒ|FÛÿ BŒÇÀeaŸ-sÊ€:úW½ÜÝÜ<%$µ†%CóDªÀí%IÈÏʤ…ôäñÞŒ÷‘a0“ôŽÚë¤nŸoW÷0«e¶y'Å»aΗ2r’# Û°A^ý9ÉQÔõ=ù5¬£Öü.(Þ’M$~V«=éSÄFN½®©ÔWô»ÿ þHžkR‹ìÏ+µµžöê;khÚI¤m¨‹Ôš–âÖçJ¾_Z•’6a”Èô> ÕÉaÕ<%®£2n bQŠå\tÈõUÿ ø»þ‹k15‚ÃuCL$ݹp P1=Oøýs¯^u éEJ”–éêŸê½5ýzy›jÛ³á›Ûkÿ ÚOcn±ÛÏîW;boºz{ãžüVÆ¡a£a5½äÎÂks¸J@?1è¿{$ä‘=k”øsÖ^nŒ¦)ÝåXÃíùN1ØõÚOJë–xF÷h¸ Œ"Ž?x䜚ü³ì¨c*Fœ¯i;7~ñí׫Ðó¥Ë»3Ãü púw ‰°<Á%»ñž ÿ P+Û^ ¾Ye£ŽCÄŒ„/>˜>•á¶Ìm~&&À>M[hÈÈÿ [Ž•íd…RO@3^Ç(ʽ*¶ÖQZyßþ
1Vº}Ñç?¼O4Rh6R€ª£í¡ûÙ
a‚3ß·Õ
ü=mRÍ/µ9¤‚0ÑC¼Iè:cŽsÛ¾™x£ÆÐ¬ªÍöˢ샒W$•€Å{¨ÀPG
ÀÀàŸZìÍ1RÉ0´ðxEË9+Éÿ ^rEÕ—±Š„70l¼áË@û.' ¼¹Žz€N3úUÉ<3á×*?²¬‚ä†"Ùc=p íÛ'¡ª1ñ"økJ†HÒ'»Ÿ+
oÏN¬Ã9 dÙãÜדÏâÍ~æc+j·Jzâ7(£ðW]•æ™?nê´º6åwéåç÷N•ZŠíž›¬|?Ðõ?Ñ-E…®³ÇV$~X¯/…õ x‘LˆÑÜÚÈ7¦pzãÜüë½ðÄ^õtÝYËÍ7ÉÖÕ8ÏUe# #€r=sU¾/é’E§jRC4mxNÝ´9†íuá»›V‘
ZI€×cr1Ÿpzsøf»¨åV‹ìû`qËLÊIã?\~¼³áËC©êhªOîO»‘ÃmçÛçút×¢x“Z}?Üê#b-¤X7õÄò gž zzbº3œm*qvs·M=íúéw}¿&Úª°^Ö×µÏ(ø‡â†Öµƒenñý†×åQáYûœ÷ÇLœôÎNk¡ð‡¼/µ¸n0æÉ0¬ƒ‚üîÉÆvŒw®Sáö”š¯‹-üÕVŠØÙ[$`(9cqƒÔ_@BëqûÙ`Ýæ0;79È?w<ó |ÙÜkßÌ1±Ëã¿ìÒ»ðlìï«ÓnªèèrP´NÏš&ŽéöÙ¸÷æ°~-_O'‰`°!RÚÚÝ%]Ø%þbß1'¿ÿ XÕáOöÎŒ·‹¬+Åæ*ÛÛ™0¤ƒOÍÔ`u¯¦ÂaèÐÃÓ«‹¨Ô¥µœ¿¯ÉyÅÙ.oÔôŸ Úx&(STðݽ¦õ] ’ÒNóÁäÈùr3í·žÚ[™ƒ¼veÈ÷ÞIõÎGlqÎ=M|«gsªxÅI6
]Z·Îªä,¨zŒŽÄ~#ØŠúFñiÉqc©éÐD>S딑 GñŽ1éÐ^+
Ëi;Ô„µVÕú»i¯ÈÒ-ZÍ]òܘ®ì`bÛÙ¥_/y(@÷qÐúg Ô÷W0.Ø›
6Ò© r>QƒŒ0+Èîzb¨É+I0TbNñ"$~)ÕÒ6Þ‹{0VÆ27œWWñcÄcX×íôûyKZéðªc'iQ¿¯LaWŠŸS\·Š“źʸ…ôÙÂí|öÀÇåV|!¤ÂGâÛ[[’ï
3OrÙËPY¹=Î1õ5öåTžÑè Ú64/üö?Zëžk}¬¶éàoá¾á}3“ü]8Éæ¿´n²Žš_6¾pœ)2?úWÓÚ¥¾¨iWúdŽq{*ª1rXŒd…m»‰äcô¯–dâ•ã‘Jº¬§¨#¨®§,df«8ÉÅßN¾hˆ;îÓ=7áùpën®É 6ûJžO2^œÐò JÖø¥²ã›Ò6Ü·‰!wbÍ‚¬O©»õ¬ÿ ƒP=Ä:â¤-&ÙŽ
`È9 r9íϧzë> XÅ7ƒ5X–krÑ¢L7€ìw}ÑŸNHëŒüþ:2†á¼+u·á÷N/Û'Ðç~ߘô«ëh!ónRéeQ´6QÛÿ èEwëÅÒ|¸Yqó1uêyùzð8 ƒŠù¦Ò;¹ä6öi<'ü³„[ÃZhu½ ùÍ¡g‚>r¯×ŠîÌx}bñ2“k꣧oø~›hTèóËWò4|ki"xßQ˜Ï6øÀLnß‚0 ¹Æ{±–¶Öe#¨27È@^Ìß.1N¾œyç€õ†ñeé·Õã†çQ°€=Ì©ºB€Ø8<‚ÃSõ®ùcc>×Ú .Fr:žÝGæ=kÁâ,^!Fž
¬,àµ}%¶«îõ¹†"r²ƒGœüYÕd?aÑÃY®49PyU ÷þ!žxÅm|/‚ãNð˜¼PcûTÒ,¹/Ý=FkÏ|u¨¶«âë…{¤m¢]Û¾ïP>®XãÞ½iÓÁ¾
‰'¬–6ß¼(„ï— í!úÙäzôë^–:œ¨å|,_¿&š×]uÓѵÛô4’j”bž§x‘Æ©ã›á,‚[Ô
ÎÞ= ŒËæ ÀùYÁ?ŽïÚ¼?ÁªxºÕÛ,°1¸‘¿ÝäãØ¯v…@¤åq½ºã œàûââ·z8Xýˆþz~—û»™âµj=Ž
â~ãáh@'h¼F#·Üp?ŸëQü-løvépx»cŸø…lxâÃûG·‰¶ø”L£©%y?¦úõÆü-Õ¶¥y`Òl7>q’2üA?•F}c‡jB:¸Jÿ +§¹¿¸Q÷°ív=VÑìu[Qml%R7a×IèTõéŽx¬
?†š7
1†îã-ˆã’L¡lŽ0OÓ=ÅuˆpÇ•¼3ÛùÒ¶W/!|’wŽw^qÔ×ÏaóM8Q¨ãÑ?ëï0IEhÄa¸X•`a
?!ÐñùQ!Rä žqŽžÝO`I0ÿ J“y|ñ!Îã@99>þ8–+éáu…!ù—ä
ʰ<÷6’I®z
ÅS„¾)Zþ_Öýµ×ËPåOwø÷þ*üïænÖùmØÝûþ¹=>¦½öî×Jh]¼ç&@§nTŒ6ITÀõ^Fxð7Å3!Ö·aÛ$þÿ ¹ã5îIo:ȪmËY[’8ÇӾlj*òû¢¥xõ¾¼ú•åk+\ð¯ HÚoŽl•Ûk,¯ ç²²cõÅ{²Z\
´ìQ åpzŽ3Ôð}ÿ Jð¯XO¡øÎé€hÙ¥ûLdŒ`““ù6Gá^ÃáÝ^Ë[Ñb¾YåŒÊ»dŽ4†2§,;ÿ CQÄ´¾°¨c–±”mºV{«ßÕýÄW\ÖŸ‘çŸ,çMRÆí“l-ƒn~ë©ÉÈê Ü?#Ž•¹ðãSÒ¥ÐWNíà½;ãž)™ÎSÈ9cóLj뵿ūiÍk¨ió¶X‚7÷ƒ€yãnyÏŽëÞ Öt`×À×V's$È9Ú:ä{wÆEk€«†Çàc—â$éÎ.éí~Ýëk}ÅAÆpörÑ¢‡Šl¡ÑüSs‹¨‰IÄóÀ×wñ&eºðf™pŒÆ9gŽTø£lñëÀçŽ NkÊUK0U’p ï^¡ãÈ¥´ø{£ÙHp`’ØåbqÏ©äó^Æ:
Ž' ÊóM«õz+ß×ó5Ÿ»('¹ð¦C„$˜Å¢_ºÈI?»^äã'ñêzž+ë€ñ-½»´}¡Ë*õ?.xÇ^1ŽMyǸ&“—L–îëöâ7…' bqéÎGé]˪â1$o²¸R8Ã`.q€}sÖ¾C98cêÆÞíïóòvÓòùœÕfÔÚéýuèÖ·Ú
Å‚_¤³ÜۺƑß”àרý:׃xPþÅÕî-/üØmnQìïGΊÙRqê=>¢½õnæ·r!—h`+’;ò3È<“Û©éšóŸx*÷V¹¸×tÈiˆßwiÔÿ |cŒñÏ®3ֽ̰‰Ë Qr©ö½®¼ÛoÑÙZÅÑ«O൯ýw8;k›ÿ x†;ˆJa;‘º9÷÷R+¡ñgŽí|Iáë{ôáo2ʲ9 029ÉÏLí\‰¿¸Ÿb˜ "Bv$£ßiê>=ªª©f
’N ëí>¡NXW~5×úíø\‰»½Ï^ø(—wÖú¥¤2íŽÞXæÁ$°eÈ888^nÝë²ñÝÔ^ ÖÚ9Q~Ëå7ï
DC¶ÑµƒsËÇè9®Wáþƒ6‡£´·°2\Ý:ÈÑ?(#¨'$õèGJ¥ñW\ÿ ‰E¶—¸™g˜ÌÀ¹;Pv ú±ÎNs·ëŸ’–"Ž/:té+ûË]öJöÓM»ëø˜*‘•^Uý—êd|‰åñMæÔÝ‹23å™6æHùÛ‚ëüñ^…ñ1¢oêûÑEØ.õ7*ÅHtÎp{g<·Á«+¸c¿¿pÓ¾Æby=8É_ÄsÆk¬ñB\jÞÔì••Ë[9Píb‹Bヅ =93§ð§LšÛáÖšÆæXÌÞdÛP.0\ãïÛ0?™úJ¸™Ë
”•œº+=<µI£¦í¯õêt¬d‹T¬P=ËFêT>ÍØØ@Ï9<÷AQÌ×»Õ¡xùk",JÎæù±Éç$œŽŸZWH®¯"·UÌQ ’ÙÈ]ÅXg<ã
ߨg3-Üqe€0¢¨*Œ$܃
’Sû 8㎼_/e'+Ï–-èÓ¶¶Õíß[·ÙÙ½îì—¼sk%§µxä‰â-pÒeÆCrú
ôσžû=”šÅô(QW‚Õd\ƒæ. \àö¹¯F½°³½0M>‘gr÷q+œ¶NïºHO— ¤ ܥݔn·J|ÆP6Kµc=Isó}Ò çGš)a=—#vK›åoK§ßóÙ¤¶¿õú…ÄRÚ[ËsöÙ¼Ë•Ë ópw®qœŒ·Ø
ùÇâ‹ý‡ãKèS&ÞvûDAù‘É9ŒîqÅ}
$SnIV[]Ñ´Ó}ØÜ¾A Ü|½kÅþÓ|EMuR¼.I¼¶däò‚ÃkÆ}ðy¹vciUœZ…Õõ»z¾÷¿n¦*j-É/àœHã\y5 Û ß™ó0—äŸnzôã#Ô¯,†¥ÚeÔ÷ÜÅ´„“'c…<íÝ€<·SŠ¥k§Ã¢éÆÆÙna‚8–=«Êª[Ÿ™°pNî02z“ÔÙ–K8.È’Þî(vƒ2®@ äÈûãçžxäÇf¯ˆu¹yUÕîýWšÙ|›ëÒ%Q^í[æ|éo5ZY•^{96ˆY‚§v*x>âº_|U¹Ö´©tûMÒÂ9PÇ#«£#€ éÉñ‘ƒÍz/‰´-į¹°dd,Б›p03ƒœ{ç9=+
Ûᧇ¬¦[‡‚ê婺¸#±ß=³ý¿•Õµjñ½HÙh›Û[§ÚýÊöô÷{˜?ô÷·Ô.u©–_%còcAÀ˜’
}0x9Î>žñÇáÍ9,ahï¦Ì2òÓ ñÛAäry$V²Nð
]=$Ž
‚#Ù‚1ƒƒødõMax‡ÂÖ^!±KkÛ‘
«“Çó²FN8+ëÎ{Ò¼oí§[«ÕMRoËeç×[_m/¦¦k.kôgŽxsSÓ´ý`êzªÜÜKo‰cPC9ÎY‰#§^üý9¹âïÞx£Ë·Ú`±‰‹¤;³–=ÏaôÕAð‚÷kêÁNBéÎælcõö®£Fð†ô2Ò¬]ßÂK$ÓÜ®•”/ÊHàã$ä¸÷ëf¹Oµúâ“”’²øè´µþöjçNü÷üÌ¿ xNïFÒd»¼·h®îT9ŽAµÖ>qÁçÔœtïÒ»\ȶÎîcÞäîó3¶@#ÉIÎ ÔñW.<´’¥–ÑÑ€ÕšA‚ ;†qÓë‚2q
ÒÂó$# Çí‡
!Ë}Õ9ÈÎÑÉã=;ŒÇÎuñ+ÉûÏ¥öíeÙ+$úíÜ娯'+êZH4ƒq¶FV‹gïŒ208ÆÌ)íб>M|÷âÍã¾"iì‹¥£Jd´™OÝç;sÈúr+ÜäˆË)DŒ¥šF°*3Õ”d{zÔwºQ¿·UžÉf†~>I+ŒqÔ`ð3œ“Ü×f]œTÁÔn4“ƒø’Ýßõ_«*5šzGCÊ,þ+ê1ò÷O¶¸cœºb2yÇ;cùÕ£ñh¬›áÑŠr¤ÝäNBk¥—á—†gxšX/쑘hŸ*Tçn =ûã¦2|(ð¿e·ºÖ$
ýìŸ!'åΰyîî+×öœ=Y:²¦ÓÞ×iü’—ü
-BK™£˜›âÆ¡&véðõ-ûÉY¹=Onj¹ø¯¯yf4·±T Pó`çœ7={×mÃ/¢˜ZÚòK…G½¥b„’G AãÜœ*í¯Ã¿ IoæI¦NU8‘RwÈã;·€ Û×ëÒ”1Y
•£E»ÿ Oyto¢<£Áö·šï,䉧ûA¼sû»Nò}¹üE{ÜÖªò1’õÞr0â}ÎØ#>à/8ïéÎ~—áÍ#ñÎlí§³2f'h”?C÷YËdð:qëõÓ·‚ïeÄ©
ÔÈØÜRL+žAÎ3¼g=åšó³Œt3
ÑQ¦ùRÙßE®¼±w_;þhš’Sirÿ ^ˆã¼iੇ|RòO„m°J/“$·l“ ÇÓ¿ÿ [ÑŠÆ“„†Õø>cFÆ6Ø1ƒ– àz7Ldòxäüwá‹ÝAXùO•Úý’é®ähm •NÀ±ÌTÈç
ƒ‘I$pGž:‚ÄbêW¢®œ´|¦nÍ>¶ÖÏ¢§ÎÜ¢ºö¹•%ÄqL^öÛKpNA<ã¡ …î==ª¸óffËF‡yÌcÉ ©ç$ð=ñÏYþÊ’Ú]—¥‚¬‚eDïÎH>Ÿ_ÌTP™a‰ch['çÆÜò7a‡?w°Ïn§âÎ5”’¨¹uÚÛ|´ÓÓc§{O—ü1•ªxsÃZ…ÊÏy¡Ã3¸Ë2Èé» ‘ƒÎ äžÜðA§cáOéúÛ4ý5-fŒï„ù¬ûô.Ç Üsž•Ò¾•wo<¶Ÿ"¬¡º|£
î2sÇ¡éE²ÉFѱrU°dÜ6œ¨ mc†Îxë׺Þ'0²¡Rr„{j¾í·è›µ÷)º·å–‹î2|I®Y¼ºÍË·–ÃÆàã£'óÆxƒOÆÞ&>\lóÌxP Xc¸ì Sþ5§qà/ê>#žÞW¸if$\3 ® ûÄ“ùŽÕê¾ð<Ó‹H¶óÏ" å·( á‘€:ã†8Ï=+ꨬUA×ÃËÚT’ÑÞöù¥¢]{»ms¥F0\ÑÕ—ô}&ÛB´ƒOŽÚ+›xíÄÀ1
,v± žIëíZ0ǧ™3í2®0ทp9öÝÔž)ÓZËoq/Ú“‘L ²ŒmùŽï‘Ó9§[Û#Ä‘\ÞB¬Çs [;à à«g‚2ôòªœÝV§»·¯/[uó½õÛï¾
/šÍ}öüÿ «=x»HŸÂÞ.™ ÌQùŸh´‘#a$‚'¡u<Š›Æ>2>+ƒLSiöwµFó1!eg`£åœ ÷ëÛö}Á¿ÛVÙêv $¬ƒ|,s÷z€ð΃¨x÷ÅD\ÜŒÞmåÔ„ ˆ o| :{ÇÓ¶–òÁn!´0Ål€, ƒ ( ÛŒŒc¶rsšæ,4‹MÛOH!@¢ ÇŽ„`å²9ÝÃw;AÍt0®¤¡…¯ØÄ.Àìí´ƒ‘ßñ5Í,Óëu-ÈÔc¢KÃÓ£òÖ̺U.õL¯0…%2È—"~x
‚[`có±nHàŽyàö™¥keˆìŒÛFç{(Ø©†`Jã#Žwg<“:ÚÉ;M
^\yhûX‡vB·÷zrF?§BÊÔ/s<ÐÈB)Û± ·ÍÔwç5Âã:så§e{mѤï«Òíh—]Wm4âí¿ùþW4bC3¶ª¾Ùr$pw`àädzt!yŠI„hÂîàM)!edŒm'æ>Ç?wzºKìcŒ´¯Ìq6fp$)ãw¡éUl`µ»ARAˆÝÕgr:äŒgƒéé[Ôö±”iYs5Ýï«ÙG—K=þF’æMG«óÿ `ŠKɦuOQ!ÕåŒ/ÎGÞ`@ËqÕzdõâ«Ê/Ö(ƒK´%ŽbMüåÜŸö—>¤óŒŒV‘°„I¢Yž#™¥ùÏÊ@8
œgqöö5ª4vד[¬(q cò¨À!FGaÁõõ¯?§†¥ÏU½í¿WªZ$úyú½Žz×§Éþ?>Ã×È•6°{™™ŽÙ.$`ÎUœ…çè ' ¤r$1Ø(y7 ðV<ž:È ÁÎMw¾Â'Øb§øxb7gãО½óÉÊë²,i„Fȹ£§8ãä½k¹¥¦ê/ç{ïê驪2œ/«ü?¯Ô›ìñÜ$þeýœRIåŒg9Ác’zrrNO bÚi¢
ѺË/$,“ª¯Ýä;Œ× ´<ÛÑn³IvŸb™¥ nm–ÄŸ—nÝÀãŽ3ëÍG,.öó³˜Ù£¹uÊÌrŠ[<±!@Æ:c9ÅZh
ì’M5ÄìÌ-‚¼ëÉùqŽGì9¬á ;¨A-ž—évþÖ–^ON·Ô”ŸEý}ú×PO&e[]ÒG¸˜Ûp ƒÃà/Ë·8ûÀ€1ž@¿ÚB*²¼ñì8@p™8Q“žÆH'8«I-%¸‚
F»“åó6°Uù|¶Ú¸ã ò^Äw¥ŠÖK–1ÜÝK,Žddlí²0PÀü“×ükG…¯U«·¶–´w¶ŽÍ¾©yÞú[Zös•¯Á[™6°
¨¼ÉVæq·,#
ìãï‘×8îry®A››¨,ãc66»Ë´ã'æÉù?t}¢æH--Òá"›|ˆ¬[í 7¶ö#¸9«––‹$,+Ëqœ\Êøc€yê^ݸÄa°«™B-9%«×®‹V´w~vÜTéꢷþ¼ˆ%·¹• ’[xç•÷2gØS?6åÀÚ õ9É#š@÷bT¸º²C*3Bá¤òÎA9 =úU§Ó"2Ãlá0iÝIc‚2Î@%öç94ùô»'»HÄ¥Ô¾@à Tp£šíx:úÊ:5eºßMý×wµ›Ó_+šº3Ýyvÿ "ºÇ<ÂI>Õ1G·Ë«È«É# àÈÇ øp Jv·šæDûE¿›†Ë’NFr2qŸ½ÇAÜšu•´éí#Ħ8£2”Ú2Ã/€[ÎTr;qŠz*ý’Îþ(≠;¡TÆâ›;ºÿ àçœk‘Þ8¾Uª¾íé{^×IZéwÓkXÉûÑZo¯_øo×È¡¬ â–ÞR§2„‚Àœü½ùç® SVa†Âüª¼±D‘ŒísŸàä|ä2 æ[‹z”¯s{wn„ÆmáóCO+†GO8Ïeçåº`¯^¼ðG5f{Xžä,k‰<á y™¥voÆ éÛõëI=œ1‹éíÔÀÑ)R#;AÂncäŽ:tÏ#¶TkB.0Œ-ÖÞZÛgumß}fÎJÉ+#2êÔP£žùÈÅi¢%œ3P*Yƒò‚A쓎2r:ƒÐúñiRUQq‰H9!”={~¼“JŽV¥»×²m.ÛߺiYl¾òk˜gL³·rT•
’…wHÁ6ä`–Î3ùÌ4Øe³†&òL‘•%clyîAÂäà0 žüç$[3uŘpNOÀÉ=† cï{rYK
ååä~FÁ
•a»"Lär1Ó¯2Äõæ<™C•.fÕ»è¥~½-¿g½Â4¡{[ør¨¶·Žõäx¥’l®qpwÇ»8ärF \cޏܯÓ-g‚yciÏÀ¾rÎwèØÈ#o°Á9ã5¢šfÔxÞæfGusÏÌJÿ µ×œ/LtãÅT7²¶w,l
ɳ;”eúà·¨çîŒsÜgTÃS¦^ '~‹®›¯+k÷ZÖd©Æ*Ó[Ü«%Œk0ŽXƒ”$k#Ȩ P2bv‘ƒŸáÇ™ÆÕb)m$É*8óLE‘8'–ÜN Úyàúô+{uº±I'wvš4fÜr íì½=úuú
sFlìV$‘ö†HÑù€$§ õ=½¸«Ž]
:Ž+•¦ïmRþ½l´îÊT#nkiøÿ _ðÆT¶7Ò½ºÒ£Î¸d\ã8=yãŽÜäR{x]ZâÚé#¸r²#»ÎHÆ6õ ç® ÎFkr;sºÄ.&;só±Ç9êH÷ýSšÕtÐU¢-n Ì| vqœ„{gŒt§S.P‹’މ_[;m¥ÞZýRûÂX{+¥úü¼ú•-àÓ7!„G"“´‹žƒnrYXã¸îp éœ!ÓoPÌtÑ (‰Þ¹é€sÓ#GLçÕšÑnJý¡!‘Tä#“ß?îýp}xÇ‚I¥Õn#·¸–y'qó@r[ Êô÷<ÔWÃÓ¢áN¥4Ô’I&ݼ¬¬¼ÞºvéÆ
FQV~_ÒüJÖÚt¥¦Xá3BÄP^%ÈÎW-×c¡ú©¤·Iþèk¥š?–UQåIR[’O 5x\ÉhÆI¶K4«2ùªŠŒ<¼óœçØ`u«‚Í.VHä€ Ëgfx''9ÆI#±®Z8
sISºku¢ßÞ]úk»Jößl¡B.Ü»ÿ MWe
°·Ž%šêɆ¼»Âù³´œ O¿cÐÓÄh©"ÛÜÏ.ÖV’3nüÄmnq[ŒòznšÖ>J¬òˆæ…qýØP Ž:ä7^0yëWšÍ_79äoaÈ °#q0{ää×mœy”R{vÒÞ¶ÚÏe¥“ÚÆÐ¥Ì®—õýjR •íç›Ìb„+JyÜØÙ•Ç]¿Ôd þËOL²”9-Œ—õÃc'æÝלçÚ²ìejP“½
âù°¨†ðqòädЃÉäÖÜj÷PÇp“ÍšŠå«‘î
<iWNsmª»¶vÓz5»ûì:Rs\Ðßôû×uÔÿÙ