Server IP : 104.21.87.198 / Your IP : 172.70.208.146 Web Server : Apache/2.2.15 (CentOS) System : Linux GA 2.6.32-431.1.2.0.1.el6.x86_64 #1 SMP Fri Dec 13 13:06:13 UTC 2013 x86_64 User : apache ( 48) PHP Version : 5.6.38 Disable Function : NONE MySQL : ON | cURL : ON | WGET : ON | Perl : ON | Python : ON | Sudo : ON | Pkexec : OFF Directory : /usr/src/openssl-1.0.1g/crypto/ec/ |
Upload File : |
| Current File : /usr/src/openssl-1.0.1g/crypto/ec/ecp_nistp256.c |
/* crypto/ec/ecp_nistp256.c */
/*
* Written by Adam Langley (Google) for the OpenSSL project
*/
/* Copyright 2011 Google Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
*
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* A 64-bit implementation of the NIST P-256 elliptic curve point multiplication
*
* OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c.
* Otherwise based on Emilia's P224 work, which was inspired by my curve25519
* work which got its smarts from Daniel J. Bernstein's work on the same.
*/
#include <openssl/opensslconf.h>
#ifndef OPENSSL_NO_EC_NISTP_64_GCC_128
#ifndef OPENSSL_SYS_VMS
#include <stdint.h>
#else
#include <inttypes.h>
#endif
#include <string.h>
#include <openssl/err.h>
#include "ec_lcl.h"
#if defined(__GNUC__) && (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 1))
/* even with gcc, the typedef won't work for 32-bit platforms */
typedef __uint128_t uint128_t; /* nonstandard; implemented by gcc on 64-bit platforms */
typedef __int128_t int128_t;
#else
#error "Need GCC 3.1 or later to define type uint128_t"
#endif
typedef uint8_t u8;
typedef uint32_t u32;
typedef uint64_t u64;
typedef int64_t s64;
/* The underlying field.
*
* P256 operates over GF(2^256-2^224+2^192+2^96-1). We can serialise an element
* of this field into 32 bytes. We call this an felem_bytearray. */
typedef u8 felem_bytearray[32];
/* These are the parameters of P256, taken from FIPS 186-3, page 86. These
* values are big-endian. */
static const felem_bytearray nistp256_curve_params[5] = {
{0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, /* p */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff},
{0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, /* a = -3 */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfc}, /* b */
{0x5a, 0xc6, 0x35, 0xd8, 0xaa, 0x3a, 0x93, 0xe7,
0xb3, 0xeb, 0xbd, 0x55, 0x76, 0x98, 0x86, 0xbc,
0x65, 0x1d, 0x06, 0xb0, 0xcc, 0x53, 0xb0, 0xf6,
0x3b, 0xce, 0x3c, 0x3e, 0x27, 0xd2, 0x60, 0x4b},
{0x6b, 0x17, 0xd1, 0xf2, 0xe1, 0x2c, 0x42, 0x47, /* x */
0xf8, 0xbc, 0xe6, 0xe5, 0x63, 0xa4, 0x40, 0xf2,
0x77, 0x03, 0x7d, 0x81, 0x2d, 0xeb, 0x33, 0xa0,
0xf4, 0xa1, 0x39, 0x45, 0xd8, 0x98, 0xc2, 0x96},
{0x4f, 0xe3, 0x42, 0xe2, 0xfe, 0x1a, 0x7f, 0x9b, /* y */
0x8e, 0xe7, 0xeb, 0x4a, 0x7c, 0x0f, 0x9e, 0x16,
0x2b, 0xce, 0x33, 0x57, 0x6b, 0x31, 0x5e, 0xce,
0xcb, 0xb6, 0x40, 0x68, 0x37, 0xbf, 0x51, 0xf5}
};
/* The representation of field elements.
* ------------------------------------
*
* We represent field elements with either four 128-bit values, eight 128-bit
* values, or four 64-bit values. The field element represented is:
* v[0]*2^0 + v[1]*2^64 + v[2]*2^128 + v[3]*2^192 (mod p)
* or:
* v[0]*2^0 + v[1]*2^64 + v[2]*2^128 + ... + v[8]*2^512 (mod p)
*
* 128-bit values are called 'limbs'. Since the limbs are spaced only 64 bits
* apart, but are 128-bits wide, the most significant bits of each limb overlap
* with the least significant bits of the next.
*
* A field element with four limbs is an 'felem'. One with eight limbs is a
* 'longfelem'
*
* A field element with four, 64-bit values is called a 'smallfelem'. Small
* values are used as intermediate values before multiplication.
*/
#define NLIMBS 4
typedef uint128_t limb;
typedef limb felem[NLIMBS];
typedef limb longfelem[NLIMBS * 2];
typedef u64 smallfelem[NLIMBS];
/* This is the value of the prime as four 64-bit words, little-endian. */
static const u64 kPrime[4] = { 0xfffffffffffffffful, 0xffffffff, 0, 0xffffffff00000001ul };
static const limb bottom32bits = 0xffffffff;
static const u64 bottom63bits = 0x7ffffffffffffffful;
/* bin32_to_felem takes a little-endian byte array and converts it into felem
* form. This assumes that the CPU is little-endian. */
static void bin32_to_felem(felem out, const u8 in[32])
{
out[0] = *((u64*) &in[0]);
out[1] = *((u64*) &in[8]);
out[2] = *((u64*) &in[16]);
out[3] = *((u64*) &in[24]);
}
/* smallfelem_to_bin32 takes a smallfelem and serialises into a little endian,
* 32 byte array. This assumes that the CPU is little-endian. */
static void smallfelem_to_bin32(u8 out[32], const smallfelem in)
{
*((u64*) &out[0]) = in[0];
*((u64*) &out[8]) = in[1];
*((u64*) &out[16]) = in[2];
*((u64*) &out[24]) = in[3];
}
/* To preserve endianness when using BN_bn2bin and BN_bin2bn */
static void flip_endian(u8 *out, const u8 *in, unsigned len)
{
unsigned i;
for (i = 0; i < len; ++i)
out[i] = in[len-1-i];
}
/* BN_to_felem converts an OpenSSL BIGNUM into an felem */
static int BN_to_felem(felem out, const BIGNUM *bn)
{
felem_bytearray b_in;
felem_bytearray b_out;
unsigned num_bytes;
/* BN_bn2bin eats leading zeroes */
memset(b_out, 0, sizeof b_out);
num_bytes = BN_num_bytes(bn);
if (num_bytes > sizeof b_out)
{
ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
return 0;
}
if (BN_is_negative(bn))
{
ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
return 0;
}
num_bytes = BN_bn2bin(bn, b_in);
flip_endian(b_out, b_in, num_bytes);
bin32_to_felem(out, b_out);
return 1;
}
/* felem_to_BN converts an felem into an OpenSSL BIGNUM */
static BIGNUM *smallfelem_to_BN(BIGNUM *out, const smallfelem in)
{
felem_bytearray b_in, b_out;
smallfelem_to_bin32(b_in, in);
flip_endian(b_out, b_in, sizeof b_out);
return BN_bin2bn(b_out, sizeof b_out, out);
}
/* Field operations
* ---------------- */
static void smallfelem_one(smallfelem out)
{
out[0] = 1;
out[1] = 0;
out[2] = 0;
out[3] = 0;
}
static void smallfelem_assign(smallfelem out, const smallfelem in)
{
out[0] = in[0];
out[1] = in[1];
out[2] = in[2];
out[3] = in[3];
}
static void felem_assign(felem out, const felem in)
{
out[0] = in[0];
out[1] = in[1];
out[2] = in[2];
out[3] = in[3];
}
/* felem_sum sets out = out + in. */
static void felem_sum(felem out, const felem in)
{
out[0] += in[0];
out[1] += in[1];
out[2] += in[2];
out[3] += in[3];
}
/* felem_small_sum sets out = out + in. */
static void felem_small_sum(felem out, const smallfelem in)
{
out[0] += in[0];
out[1] += in[1];
out[2] += in[2];
out[3] += in[3];
}
/* felem_scalar sets out = out * scalar */
static void felem_scalar(felem out, const u64 scalar)
{
out[0] *= scalar;
out[1] *= scalar;
out[2] *= scalar;
out[3] *= scalar;
}
/* longfelem_scalar sets out = out * scalar */
static void longfelem_scalar(longfelem out, const u64 scalar)
{
out[0] *= scalar;
out[1] *= scalar;
out[2] *= scalar;
out[3] *= scalar;
out[4] *= scalar;
out[5] *= scalar;
out[6] *= scalar;
out[7] *= scalar;
}
#define two105m41m9 (((limb)1) << 105) - (((limb)1) << 41) - (((limb)1) << 9)
#define two105 (((limb)1) << 105)
#define two105m41p9 (((limb)1) << 105) - (((limb)1) << 41) + (((limb)1) << 9)
/* zero105 is 0 mod p */
static const felem zero105 = { two105m41m9, two105, two105m41p9, two105m41p9 };
/* smallfelem_neg sets |out| to |-small|
* On exit:
* out[i] < out[i] + 2^105
*/
static void smallfelem_neg(felem out, const smallfelem small)
{
/* In order to prevent underflow, we subtract from 0 mod p. */
out[0] = zero105[0] - small[0];
out[1] = zero105[1] - small[1];
out[2] = zero105[2] - small[2];
out[3] = zero105[3] - small[3];
}
/* felem_diff subtracts |in| from |out|
* On entry:
* in[i] < 2^104
* On exit:
* out[i] < out[i] + 2^105
*/
static void felem_diff(felem out, const felem in)
{
/* In order to prevent underflow, we add 0 mod p before subtracting. */
out[0] += zero105[0];
out[1] += zero105[1];
out[2] += zero105[2];
out[3] += zero105[3];
out[0] -= in[0];
out[1] -= in[1];
out[2] -= in[2];
out[3] -= in[3];
}
#define two107m43m11 (((limb)1) << 107) - (((limb)1) << 43) - (((limb)1) << 11)
#define two107 (((limb)1) << 107)
#define two107m43p11 (((limb)1) << 107) - (((limb)1) << 43) + (((limb)1) << 11)
/* zero107 is 0 mod p */
static const felem zero107 = { two107m43m11, two107, two107m43p11, two107m43p11 };
/* An alternative felem_diff for larger inputs |in|
* felem_diff_zero107 subtracts |in| from |out|
* On entry:
* in[i] < 2^106
* On exit:
* out[i] < out[i] + 2^107
*/
static void felem_diff_zero107(felem out, const felem in)
{
/* In order to prevent underflow, we add 0 mod p before subtracting. */
out[0] += zero107[0];
out[1] += zero107[1];
out[2] += zero107[2];
out[3] += zero107[3];
out[0] -= in[0];
out[1] -= in[1];
out[2] -= in[2];
out[3] -= in[3];
}
/* longfelem_diff subtracts |in| from |out|
* On entry:
* in[i] < 7*2^67
* On exit:
* out[i] < out[i] + 2^70 + 2^40
*/
static void longfelem_diff(longfelem out, const longfelem in)
{
static const limb two70m8p6 = (((limb)1) << 70) - (((limb)1) << 8) + (((limb)1) << 6);
static const limb two70p40 = (((limb)1) << 70) + (((limb)1) << 40);
static const limb two70 = (((limb)1) << 70);
static const limb two70m40m38p6 = (((limb)1) << 70) - (((limb)1) << 40) - (((limb)1) << 38) + (((limb)1) << 6);
static const limb two70m6 = (((limb)1) << 70) - (((limb)1) << 6);
/* add 0 mod p to avoid underflow */
out[0] += two70m8p6;
out[1] += two70p40;
out[2] += two70;
out[3] += two70m40m38p6;
out[4] += two70m6;
out[5] += two70m6;
out[6] += two70m6;
out[7] += two70m6;
/* in[i] < 7*2^67 < 2^70 - 2^40 - 2^38 + 2^6 */
out[0] -= in[0];
out[1] -= in[1];
out[2] -= in[2];
out[3] -= in[3];
out[4] -= in[4];
out[5] -= in[5];
out[6] -= in[6];
out[7] -= in[7];
}
#define two64m0 (((limb)1) << 64) - 1
#define two110p32m0 (((limb)1) << 110) + (((limb)1) << 32) - 1
#define two64m46 (((limb)1) << 64) - (((limb)1) << 46)
#define two64m32 (((limb)1) << 64) - (((limb)1) << 32)
/* zero110 is 0 mod p */
static const felem zero110 = { two64m0, two110p32m0, two64m46, two64m32 };
/* felem_shrink converts an felem into a smallfelem. The result isn't quite
* minimal as the value may be greater than p.
*
* On entry:
* in[i] < 2^109
* On exit:
* out[i] < 2^64
*/
static void felem_shrink(smallfelem out, const felem in)
{
felem tmp;
u64 a, b, mask;
s64 high, low;
static const u64 kPrime3Test = 0x7fffffff00000001ul; /* 2^63 - 2^32 + 1 */
/* Carry 2->3 */
tmp[3] = zero110[3] + in[3] + ((u64) (in[2] >> 64));
/* tmp[3] < 2^110 */
tmp[2] = zero110[2] + (u64) in[2];
tmp[0] = zero110[0] + in[0];
tmp[1] = zero110[1] + in[1];
/* tmp[0] < 2**110, tmp[1] < 2^111, tmp[2] < 2**65 */
/* We perform two partial reductions where we eliminate the
* high-word of tmp[3]. We don't update the other words till the end.
*/
a = tmp[3] >> 64; /* a < 2^46 */
tmp[3] = (u64) tmp[3];
tmp[3] -= a;
tmp[3] += ((limb)a) << 32;
/* tmp[3] < 2^79 */
b = a;
a = tmp[3] >> 64; /* a < 2^15 */
b += a; /* b < 2^46 + 2^15 < 2^47 */
tmp[3] = (u64) tmp[3];
tmp[3] -= a;
tmp[3] += ((limb)a) << 32;
/* tmp[3] < 2^64 + 2^47 */
/* This adjusts the other two words to complete the two partial
* reductions. */
tmp[0] += b;
tmp[1] -= (((limb)b) << 32);
/* In order to make space in tmp[3] for the carry from 2 -> 3, we
* conditionally subtract kPrime if tmp[3] is large enough. */
high = tmp[3] >> 64;
/* As tmp[3] < 2^65, high is either 1 or 0 */
high <<= 63;
high >>= 63;
/* high is:
* all ones if the high word of tmp[3] is 1
* all zeros if the high word of tmp[3] if 0 */
low = tmp[3];
mask = low >> 63;
/* mask is:
* all ones if the MSB of low is 1
* all zeros if the MSB of low if 0 */
low &= bottom63bits;
low -= kPrime3Test;
/* if low was greater than kPrime3Test then the MSB is zero */
low = ~low;
low >>= 63;
/* low is:
* all ones if low was > kPrime3Test
* all zeros if low was <= kPrime3Test */
mask = (mask & low) | high;
tmp[0] -= mask & kPrime[0];
tmp[1] -= mask & kPrime[1];
/* kPrime[2] is zero, so omitted */
tmp[3] -= mask & kPrime[3];
/* tmp[3] < 2**64 - 2**32 + 1 */
tmp[1] += ((u64) (tmp[0] >> 64)); tmp[0] = (u64) tmp[0];
tmp[2] += ((u64) (tmp[1] >> 64)); tmp[1] = (u64) tmp[1];
tmp[3] += ((u64) (tmp[2] >> 64)); tmp[2] = (u64) tmp[2];
/* tmp[i] < 2^64 */
out[0] = tmp[0];
out[1] = tmp[1];
out[2] = tmp[2];
out[3] = tmp[3];
}
/* smallfelem_expand converts a smallfelem to an felem */
static void smallfelem_expand(felem out, const smallfelem in)
{
out[0] = in[0];
out[1] = in[1];
out[2] = in[2];
out[3] = in[3];
}
/* smallfelem_square sets |out| = |small|^2
* On entry:
* small[i] < 2^64
* On exit:
* out[i] < 7 * 2^64 < 2^67
*/
static void smallfelem_square(longfelem out, const smallfelem small)
{
limb a;
u64 high, low;
a = ((uint128_t) small[0]) * small[0];
low = a;
high = a >> 64;
out[0] = low;
out[1] = high;
a = ((uint128_t) small[0]) * small[1];
low = a;
high = a >> 64;
out[1] += low;
out[1] += low;
out[2] = high;
a = ((uint128_t) small[0]) * small[2];
low = a;
high = a >> 64;
out[2] += low;
out[2] *= 2;
out[3] = high;
a = ((uint128_t) small[0]) * small[3];
low = a;
high = a >> 64;
out[3] += low;
out[4] = high;
a = ((uint128_t) small[1]) * small[2];
low = a;
high = a >> 64;
out[3] += low;
out[3] *= 2;
out[4] += high;
a = ((uint128_t) small[1]) * small[1];
low = a;
high = a >> 64;
out[2] += low;
out[3] += high;
a = ((uint128_t) small[1]) * small[3];
low = a;
high = a >> 64;
out[4] += low;
out[4] *= 2;
out[5] = high;
a = ((uint128_t) small[2]) * small[3];
low = a;
high = a >> 64;
out[5] += low;
out[5] *= 2;
out[6] = high;
out[6] += high;
a = ((uint128_t) small[2]) * small[2];
low = a;
high = a >> 64;
out[4] += low;
out[5] += high;
a = ((uint128_t) small[3]) * small[3];
low = a;
high = a >> 64;
out[6] += low;
out[7] = high;
}
/* felem_square sets |out| = |in|^2
* On entry:
* in[i] < 2^109
* On exit:
* out[i] < 7 * 2^64 < 2^67
*/
static void felem_square(longfelem out, const felem in)
{
u64 small[4];
felem_shrink(small, in);
smallfelem_square(out, small);
}
/* smallfelem_mul sets |out| = |small1| * |small2|
* On entry:
* small1[i] < 2^64
* small2[i] < 2^64
* On exit:
* out[i] < 7 * 2^64 < 2^67
*/
static void smallfelem_mul(longfelem out, const smallfelem small1, const smallfelem small2)
{
limb a;
u64 high, low;
a = ((uint128_t) small1[0]) * small2[0];
low = a;
high = a >> 64;
out[0] = low;
out[1] = high;
a = ((uint128_t) small1[0]) * small2[1];
low = a;
high = a >> 64;
out[1] += low;
out[2] = high;
a = ((uint128_t) small1[1]) * small2[0];
low = a;
high = a >> 64;
out[1] += low;
out[2] += high;
a = ((uint128_t) small1[0]) * small2[2];
low = a;
high = a >> 64;
out[2] += low;
out[3] = high;
a = ((uint128_t) small1[1]) * small2[1];
low = a;
high = a >> 64;
out[2] += low;
out[3] += high;
a = ((uint128_t) small1[2]) * small2[0];
low = a;
high = a >> 64;
out[2] += low;
out[3] += high;
a = ((uint128_t) small1[0]) * small2[3];
low = a;
high = a >> 64;
out[3] += low;
out[4] = high;
a = ((uint128_t) small1[1]) * small2[2];
low = a;
high = a >> 64;
out[3] += low;
out[4] += high;
a = ((uint128_t) small1[2]) * small2[1];
low = a;
high = a >> 64;
out[3] += low;
out[4] += high;
a = ((uint128_t) small1[3]) * small2[0];
low = a;
high = a >> 64;
out[3] += low;
out[4] += high;
a = ((uint128_t) small1[1]) * small2[3];
low = a;
high = a >> 64;
out[4] += low;
out[5] = high;
a = ((uint128_t) small1[2]) * small2[2];
low = a;
high = a >> 64;
out[4] += low;
out[5] += high;
a = ((uint128_t) small1[3]) * small2[1];
low = a;
high = a >> 64;
out[4] += low;
out[5] += high;
a = ((uint128_t) small1[2]) * small2[3];
low = a;
high = a >> 64;
out[5] += low;
out[6] = high;
a = ((uint128_t) small1[3]) * small2[2];
low = a;
high = a >> 64;
out[5] += low;
out[6] += high;
a = ((uint128_t) small1[3]) * small2[3];
low = a;
high = a >> 64;
out[6] += low;
out[7] = high;
}
/* felem_mul sets |out| = |in1| * |in2|
* On entry:
* in1[i] < 2^109
* in2[i] < 2^109
* On exit:
* out[i] < 7 * 2^64 < 2^67
*/
static void felem_mul(longfelem out, const felem in1, const felem in2)
{
smallfelem small1, small2;
felem_shrink(small1, in1);
felem_shrink(small2, in2);
smallfelem_mul(out, small1, small2);
}
/* felem_small_mul sets |out| = |small1| * |in2|
* On entry:
* small1[i] < 2^64
* in2[i] < 2^109
* On exit:
* out[i] < 7 * 2^64 < 2^67
*/
static void felem_small_mul(longfelem out, const smallfelem small1, const felem in2)
{
smallfelem small2;
felem_shrink(small2, in2);
smallfelem_mul(out, small1, small2);
}
#define two100m36m4 (((limb)1) << 100) - (((limb)1) << 36) - (((limb)1) << 4)
#define two100 (((limb)1) << 100)
#define two100m36p4 (((limb)1) << 100) - (((limb)1) << 36) + (((limb)1) << 4)
/* zero100 is 0 mod p */
static const felem zero100 = { two100m36m4, two100, two100m36p4, two100m36p4 };
/* Internal function for the different flavours of felem_reduce.
* felem_reduce_ reduces the higher coefficients in[4]-in[7].
* On entry:
* out[0] >= in[6] + 2^32*in[6] + in[7] + 2^32*in[7]
* out[1] >= in[7] + 2^32*in[4]
* out[2] >= in[5] + 2^32*in[5]
* out[3] >= in[4] + 2^32*in[5] + 2^32*in[6]
* On exit:
* out[0] <= out[0] + in[4] + 2^32*in[5]
* out[1] <= out[1] + in[5] + 2^33*in[6]
* out[2] <= out[2] + in[7] + 2*in[6] + 2^33*in[7]
* out[3] <= out[3] + 2^32*in[4] + 3*in[7]
*/
static void felem_reduce_(felem out, const longfelem in)
{
int128_t c;
/* combine common terms from below */
c = in[4] + (in[5] << 32);
out[0] += c;
out[3] -= c;
c = in[5] - in[7];
out[1] += c;
out[2] -= c;
/* the remaining terms */
/* 256: [(0,1),(96,-1),(192,-1),(224,1)] */
out[1] -= (in[4] << 32);
out[3] += (in[4] << 32);
/* 320: [(32,1),(64,1),(128,-1),(160,-1),(224,-1)] */
out[2] -= (in[5] << 32);
/* 384: [(0,-1),(32,-1),(96,2),(128,2),(224,-1)] */
out[0] -= in[6];
out[0] -= (in[6] << 32);
out[1] += (in[6] << 33);
out[2] += (in[6] * 2);
out[3] -= (in[6] << 32);
/* 448: [(0,-1),(32,-1),(64,-1),(128,1),(160,2),(192,3)] */
out[0] -= in[7];
out[0] -= (in[7] << 32);
out[2] += (in[7] << 33);
out[3] += (in[7] * 3);
}
/* felem_reduce converts a longfelem into an felem.
* To be called directly after felem_square or felem_mul.
* On entry:
* in[0] < 2^64, in[1] < 3*2^64, in[2] < 5*2^64, in[3] < 7*2^64
* in[4] < 7*2^64, in[5] < 5*2^64, in[6] < 3*2^64, in[7] < 2*64
* On exit:
* out[i] < 2^101
*/
static void felem_reduce(felem out, const longfelem in)
{
out[0] = zero100[0] + in[0];
out[1] = zero100[1] + in[1];
out[2] = zero100[2] + in[2];
out[3] = zero100[3] + in[3];
felem_reduce_(out, in);
/* out[0] > 2^100 - 2^36 - 2^4 - 3*2^64 - 3*2^96 - 2^64 - 2^96 > 0
* out[1] > 2^100 - 2^64 - 7*2^96 > 0
* out[2] > 2^100 - 2^36 + 2^4 - 5*2^64 - 5*2^96 > 0
* out[3] > 2^100 - 2^36 + 2^4 - 7*2^64 - 5*2^96 - 3*2^96 > 0
*
* out[0] < 2^100 + 2^64 + 7*2^64 + 5*2^96 < 2^101
* out[1] < 2^100 + 3*2^64 + 5*2^64 + 3*2^97 < 2^101
* out[2] < 2^100 + 5*2^64 + 2^64 + 3*2^65 + 2^97 < 2^101
* out[3] < 2^100 + 7*2^64 + 7*2^96 + 3*2^64 < 2^101
*/
}
/* felem_reduce_zero105 converts a larger longfelem into an felem.
* On entry:
* in[0] < 2^71
* On exit:
* out[i] < 2^106
*/
static void felem_reduce_zero105(felem out, const longfelem in)
{
out[0] = zero105[0] + in[0];
out[1] = zero105[1] + in[1];
out[2] = zero105[2] + in[2];
out[3] = zero105[3] + in[3];
felem_reduce_(out, in);
/* out[0] > 2^105 - 2^41 - 2^9 - 2^71 - 2^103 - 2^71 - 2^103 > 0
* out[1] > 2^105 - 2^71 - 2^103 > 0
* out[2] > 2^105 - 2^41 + 2^9 - 2^71 - 2^103 > 0
* out[3] > 2^105 - 2^41 + 2^9 - 2^71 - 2^103 - 2^103 > 0
*
* out[0] < 2^105 + 2^71 + 2^71 + 2^103 < 2^106
* out[1] < 2^105 + 2^71 + 2^71 + 2^103 < 2^106
* out[2] < 2^105 + 2^71 + 2^71 + 2^71 + 2^103 < 2^106
* out[3] < 2^105 + 2^71 + 2^103 + 2^71 < 2^106
*/
}
/* subtract_u64 sets *result = *result - v and *carry to one if the subtraction
* underflowed. */
static void subtract_u64(u64* result, u64* carry, u64 v)
{
uint128_t r = *result;
r -= v;
*carry = (r >> 64) & 1;
*result = (u64) r;
}
/* felem_contract converts |in| to its unique, minimal representation.
* On entry:
* in[i] < 2^109
*/
static void felem_contract(smallfelem out, const felem in)
{
unsigned i;
u64 all_equal_so_far = 0, result = 0, carry;
felem_shrink(out, in);
/* small is minimal except that the value might be > p */
all_equal_so_far--;
/* We are doing a constant time test if out >= kPrime. We need to
* compare each u64, from most-significant to least significant. For
* each one, if all words so far have been equal (m is all ones) then a
* non-equal result is the answer. Otherwise we continue. */
for (i = 3; i < 4; i--)
{
u64 equal;
uint128_t a = ((uint128_t) kPrime[i]) - out[i];
/* if out[i] > kPrime[i] then a will underflow and the high
* 64-bits will all be set. */
result |= all_equal_so_far & ((u64) (a >> 64));
/* if kPrime[i] == out[i] then |equal| will be all zeros and
* the decrement will make it all ones. */
equal = kPrime[i] ^ out[i];
equal--;
equal &= equal << 32;
equal &= equal << 16;
equal &= equal << 8;
equal &= equal << 4;
equal &= equal << 2;
equal &= equal << 1;
equal = ((s64) equal) >> 63;
all_equal_so_far &= equal;
}
/* if all_equal_so_far is still all ones then the two values are equal
* and so out >= kPrime is true. */
result |= all_equal_so_far;
/* if out >= kPrime then we subtract kPrime. */
subtract_u64(&out[0], &carry, result & kPrime[0]);
subtract_u64(&out[1], &carry, carry);
subtract_u64(&out[2], &carry, carry);
subtract_u64(&out[3], &carry, carry);
subtract_u64(&out[1], &carry, result & kPrime[1]);
subtract_u64(&out[2], &carry, carry);
subtract_u64(&out[3], &carry, carry);
subtract_u64(&out[2], &carry, result & kPrime[2]);
subtract_u64(&out[3], &carry, carry);
subtract_u64(&out[3], &carry, result & kPrime[3]);
}
static void smallfelem_square_contract(smallfelem out, const smallfelem in)
{
longfelem longtmp;
felem tmp;
smallfelem_square(longtmp, in);
felem_reduce(tmp, longtmp);
felem_contract(out, tmp);
}
static void smallfelem_mul_contract(smallfelem out, const smallfelem in1, const smallfelem in2)
{
longfelem longtmp;
felem tmp;
smallfelem_mul(longtmp, in1, in2);
felem_reduce(tmp, longtmp);
felem_contract(out, tmp);
}
/* felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0
* otherwise.
* On entry:
* small[i] < 2^64
*/
static limb smallfelem_is_zero(const smallfelem small)
{
limb result;
u64 is_p;
u64 is_zero = small[0] | small[1] | small[2] | small[3];
is_zero--;
is_zero &= is_zero << 32;
is_zero &= is_zero << 16;
is_zero &= is_zero << 8;
is_zero &= is_zero << 4;
is_zero &= is_zero << 2;
is_zero &= is_zero << 1;
is_zero = ((s64) is_zero) >> 63;
is_p = (small[0] ^ kPrime[0]) |
(small[1] ^ kPrime[1]) |
(small[2] ^ kPrime[2]) |
(small[3] ^ kPrime[3]);
is_p--;
is_p &= is_p << 32;
is_p &= is_p << 16;
is_p &= is_p << 8;
is_p &= is_p << 4;
is_p &= is_p << 2;
is_p &= is_p << 1;
is_p = ((s64) is_p) >> 63;
is_zero |= is_p;
result = is_zero;
result |= ((limb) is_zero) << 64;
return result;
}
static int smallfelem_is_zero_int(const smallfelem small)
{
return (int) (smallfelem_is_zero(small) & ((limb)1));
}
/* felem_inv calculates |out| = |in|^{-1}
*
* Based on Fermat's Little Theorem:
* a^p = a (mod p)
* a^{p-1} = 1 (mod p)
* a^{p-2} = a^{-1} (mod p)
*/
static void felem_inv(felem out, const felem in)
{
felem ftmp, ftmp2;
/* each e_I will hold |in|^{2^I - 1} */
felem e2, e4, e8, e16, e32, e64;
longfelem tmp;
unsigned i;
felem_square(tmp, in); felem_reduce(ftmp, tmp); /* 2^1 */
felem_mul(tmp, in, ftmp); felem_reduce(ftmp, tmp); /* 2^2 - 2^0 */
felem_assign(e2, ftmp);
felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); /* 2^3 - 2^1 */
felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); /* 2^4 - 2^2 */
felem_mul(tmp, ftmp, e2); felem_reduce(ftmp, tmp); /* 2^4 - 2^0 */
felem_assign(e4, ftmp);
felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); /* 2^5 - 2^1 */
felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); /* 2^6 - 2^2 */
felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); /* 2^7 - 2^3 */
felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); /* 2^8 - 2^4 */
felem_mul(tmp, ftmp, e4); felem_reduce(ftmp, tmp); /* 2^8 - 2^0 */
felem_assign(e8, ftmp);
for (i = 0; i < 8; i++) {
felem_square(tmp, ftmp); felem_reduce(ftmp, tmp);
} /* 2^16 - 2^8 */
felem_mul(tmp, ftmp, e8); felem_reduce(ftmp, tmp); /* 2^16 - 2^0 */
felem_assign(e16, ftmp);
for (i = 0; i < 16; i++) {
felem_square(tmp, ftmp); felem_reduce(ftmp, tmp);
} /* 2^32 - 2^16 */
felem_mul(tmp, ftmp, e16); felem_reduce(ftmp, tmp); /* 2^32 - 2^0 */
felem_assign(e32, ftmp);
for (i = 0; i < 32; i++) {
felem_square(tmp, ftmp); felem_reduce(ftmp, tmp);
} /* 2^64 - 2^32 */
felem_assign(e64, ftmp);
felem_mul(tmp, ftmp, in); felem_reduce(ftmp, tmp); /* 2^64 - 2^32 + 2^0 */
for (i = 0; i < 192; i++) {
felem_square(tmp, ftmp); felem_reduce(ftmp, tmp);
} /* 2^256 - 2^224 + 2^192 */
felem_mul(tmp, e64, e32); felem_reduce(ftmp2, tmp); /* 2^64 - 2^0 */
for (i = 0; i < 16; i++) {
felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);
} /* 2^80 - 2^16 */
felem_mul(tmp, ftmp2, e16); felem_reduce(ftmp2, tmp); /* 2^80 - 2^0 */
for (i = 0; i < 8; i++) {
felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);
} /* 2^88 - 2^8 */
felem_mul(tmp, ftmp2, e8); felem_reduce(ftmp2, tmp); /* 2^88 - 2^0 */
for (i = 0; i < 4; i++) {
felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);
} /* 2^92 - 2^4 */
felem_mul(tmp, ftmp2, e4); felem_reduce(ftmp2, tmp); /* 2^92 - 2^0 */
felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); /* 2^93 - 2^1 */
felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); /* 2^94 - 2^2 */
felem_mul(tmp, ftmp2, e2); felem_reduce(ftmp2, tmp); /* 2^94 - 2^0 */
felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); /* 2^95 - 2^1 */
felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); /* 2^96 - 2^2 */
felem_mul(tmp, ftmp2, in); felem_reduce(ftmp2, tmp); /* 2^96 - 3 */
felem_mul(tmp, ftmp2, ftmp); felem_reduce(out, tmp); /* 2^256 - 2^224 + 2^192 + 2^96 - 3 */
}
static void smallfelem_inv_contract(smallfelem out, const smallfelem in)
{
felem tmp;
smallfelem_expand(tmp, in);
felem_inv(tmp, tmp);
felem_contract(out, tmp);
}
/* Group operations
* ----------------
*
* Building on top of the field operations we have the operations on the
* elliptic curve group itself. Points on the curve are represented in Jacobian
* coordinates */
/* point_double calculates 2*(x_in, y_in, z_in)
*
* The method is taken from:
* http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
*
* Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
* while x_out == y_in is not (maybe this works, but it's not tested). */
static void
point_double(felem x_out, felem y_out, felem z_out,
const felem x_in, const felem y_in, const felem z_in)
{
longfelem tmp, tmp2;
felem delta, gamma, beta, alpha, ftmp, ftmp2;
smallfelem small1, small2;
felem_assign(ftmp, x_in);
/* ftmp[i] < 2^106 */
felem_assign(ftmp2, x_in);
/* ftmp2[i] < 2^106 */
/* delta = z^2 */
felem_square(tmp, z_in);
felem_reduce(delta, tmp);
/* delta[i] < 2^101 */
/* gamma = y^2 */
felem_square(tmp, y_in);
felem_reduce(gamma, tmp);
/* gamma[i] < 2^101 */
felem_shrink(small1, gamma);
/* beta = x*gamma */
felem_small_mul(tmp, small1, x_in);
felem_reduce(beta, tmp);
/* beta[i] < 2^101 */
/* alpha = 3*(x-delta)*(x+delta) */
felem_diff(ftmp, delta);
/* ftmp[i] < 2^105 + 2^106 < 2^107 */
felem_sum(ftmp2, delta);
/* ftmp2[i] < 2^105 + 2^106 < 2^107 */
felem_scalar(ftmp2, 3);
/* ftmp2[i] < 3 * 2^107 < 2^109 */
felem_mul(tmp, ftmp, ftmp2);
felem_reduce(alpha, tmp);
/* alpha[i] < 2^101 */
felem_shrink(small2, alpha);
/* x' = alpha^2 - 8*beta */
smallfelem_square(tmp, small2);
felem_reduce(x_out, tmp);
felem_assign(ftmp, beta);
felem_scalar(ftmp, 8);
/* ftmp[i] < 8 * 2^101 = 2^104 */
felem_diff(x_out, ftmp);
/* x_out[i] < 2^105 + 2^101 < 2^106 */
/* z' = (y + z)^2 - gamma - delta */
felem_sum(delta, gamma);
/* delta[i] < 2^101 + 2^101 = 2^102 */
felem_assign(ftmp, y_in);
felem_sum(ftmp, z_in);
/* ftmp[i] < 2^106 + 2^106 = 2^107 */
felem_square(tmp, ftmp);
felem_reduce(z_out, tmp);
felem_diff(z_out, delta);
/* z_out[i] < 2^105 + 2^101 < 2^106 */
/* y' = alpha*(4*beta - x') - 8*gamma^2 */
felem_scalar(beta, 4);
/* beta[i] < 4 * 2^101 = 2^103 */
felem_diff_zero107(beta, x_out);
/* beta[i] < 2^107 + 2^103 < 2^108 */
felem_small_mul(tmp, small2, beta);
/* tmp[i] < 7 * 2^64 < 2^67 */
smallfelem_square(tmp2, small1);
/* tmp2[i] < 7 * 2^64 */
longfelem_scalar(tmp2, 8);
/* tmp2[i] < 8 * 7 * 2^64 = 7 * 2^67 */
longfelem_diff(tmp, tmp2);
/* tmp[i] < 2^67 + 2^70 + 2^40 < 2^71 */
felem_reduce_zero105(y_out, tmp);
/* y_out[i] < 2^106 */
}
/* point_double_small is the same as point_double, except that it operates on
* smallfelems */
static void
point_double_small(smallfelem x_out, smallfelem y_out, smallfelem z_out,
const smallfelem x_in, const smallfelem y_in, const smallfelem z_in)
{
felem felem_x_out, felem_y_out, felem_z_out;
felem felem_x_in, felem_y_in, felem_z_in;
smallfelem_expand(felem_x_in, x_in);
smallfelem_expand(felem_y_in, y_in);
smallfelem_expand(felem_z_in, z_in);
point_double(felem_x_out, felem_y_out, felem_z_out,
felem_x_in, felem_y_in, felem_z_in);
felem_shrink(x_out, felem_x_out);
felem_shrink(y_out, felem_y_out);
felem_shrink(z_out, felem_z_out);
}
/* copy_conditional copies in to out iff mask is all ones. */
static void
copy_conditional(felem out, const felem in, limb mask)
{
unsigned i;
for (i = 0; i < NLIMBS; ++i)
{
const limb tmp = mask & (in[i] ^ out[i]);
out[i] ^= tmp;
}
}
/* copy_small_conditional copies in to out iff mask is all ones. */
static void
copy_small_conditional(felem out, const smallfelem in, limb mask)
{
unsigned i;
const u64 mask64 = mask;
for (i = 0; i < NLIMBS; ++i)
{
out[i] = ((limb) (in[i] & mask64)) | (out[i] & ~mask);
}
}
/* point_add calcuates (x1, y1, z1) + (x2, y2, z2)
*
* The method is taken from:
* http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
* adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
*
* This function includes a branch for checking whether the two input points
* are equal, (while not equal to the point at infinity). This case never
* happens during single point multiplication, so there is no timing leak for
* ECDH or ECDSA signing. */
static void point_add(felem x3, felem y3, felem z3,
const felem x1, const felem y1, const felem z1,
const int mixed, const smallfelem x2, const smallfelem y2, const smallfelem z2)
{
felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out;
longfelem tmp, tmp2;
smallfelem small1, small2, small3, small4, small5;
limb x_equal, y_equal, z1_is_zero, z2_is_zero;
felem_shrink(small3, z1);
z1_is_zero = smallfelem_is_zero(small3);
z2_is_zero = smallfelem_is_zero(z2);
/* ftmp = z1z1 = z1**2 */
smallfelem_square(tmp, small3);
felem_reduce(ftmp, tmp);
/* ftmp[i] < 2^101 */
felem_shrink(small1, ftmp);
if(!mixed)
{
/* ftmp2 = z2z2 = z2**2 */
smallfelem_square(tmp, z2);
felem_reduce(ftmp2, tmp);
/* ftmp2[i] < 2^101 */
felem_shrink(small2, ftmp2);
felem_shrink(small5, x1);
/* u1 = ftmp3 = x1*z2z2 */
smallfelem_mul(tmp, small5, small2);
felem_reduce(ftmp3, tmp);
/* ftmp3[i] < 2^101 */
/* ftmp5 = z1 + z2 */
felem_assign(ftmp5, z1);
felem_small_sum(ftmp5, z2);
/* ftmp5[i] < 2^107 */
/* ftmp5 = (z1 + z2)**2 - (z1z1 + z2z2) = 2z1z2 */
felem_square(tmp, ftmp5);
felem_reduce(ftmp5, tmp);
/* ftmp2 = z2z2 + z1z1 */
felem_sum(ftmp2, ftmp);
/* ftmp2[i] < 2^101 + 2^101 = 2^102 */
felem_diff(ftmp5, ftmp2);
/* ftmp5[i] < 2^105 + 2^101 < 2^106 */
/* ftmp2 = z2 * z2z2 */
smallfelem_mul(tmp, small2, z2);
felem_reduce(ftmp2, tmp);
/* s1 = ftmp2 = y1 * z2**3 */
felem_mul(tmp, y1, ftmp2);
felem_reduce(ftmp6, tmp);
/* ftmp6[i] < 2^101 */
}
else
{
/* We'll assume z2 = 1 (special case z2 = 0 is handled later) */
/* u1 = ftmp3 = x1*z2z2 */
felem_assign(ftmp3, x1);
/* ftmp3[i] < 2^106 */
/* ftmp5 = 2z1z2 */
felem_assign(ftmp5, z1);
felem_scalar(ftmp5, 2);
/* ftmp5[i] < 2*2^106 = 2^107 */
/* s1 = ftmp2 = y1 * z2**3 */
felem_assign(ftmp6, y1);
/* ftmp6[i] < 2^106 */
}
/* u2 = x2*z1z1 */
smallfelem_mul(tmp, x2, small1);
felem_reduce(ftmp4, tmp);
/* h = ftmp4 = u2 - u1 */
felem_diff_zero107(ftmp4, ftmp3);
/* ftmp4[i] < 2^107 + 2^101 < 2^108 */
felem_shrink(small4, ftmp4);
x_equal = smallfelem_is_zero(small4);
/* z_out = ftmp5 * h */
felem_small_mul(tmp, small4, ftmp5);
felem_reduce(z_out, tmp);
/* z_out[i] < 2^101 */
/* ftmp = z1 * z1z1 */
smallfelem_mul(tmp, small1, small3);
felem_reduce(ftmp, tmp);
/* s2 = tmp = y2 * z1**3 */
felem_small_mul(tmp, y2, ftmp);
felem_reduce(ftmp5, tmp);
/* r = ftmp5 = (s2 - s1)*2 */
felem_diff_zero107(ftmp5, ftmp6);
/* ftmp5[i] < 2^107 + 2^107 = 2^108*/
felem_scalar(ftmp5, 2);
/* ftmp5[i] < 2^109 */
felem_shrink(small1, ftmp5);
y_equal = smallfelem_is_zero(small1);
if (x_equal && y_equal && !z1_is_zero && !z2_is_zero)
{
point_double(x3, y3, z3, x1, y1, z1);
return;
}
/* I = ftmp = (2h)**2 */
felem_assign(ftmp, ftmp4);
felem_scalar(ftmp, 2);
/* ftmp[i] < 2*2^108 = 2^109 */
felem_square(tmp, ftmp);
felem_reduce(ftmp, tmp);
/* J = ftmp2 = h * I */
felem_mul(tmp, ftmp4, ftmp);
felem_reduce(ftmp2, tmp);
/* V = ftmp4 = U1 * I */
felem_mul(tmp, ftmp3, ftmp);
felem_reduce(ftmp4, tmp);
/* x_out = r**2 - J - 2V */
smallfelem_square(tmp, small1);
felem_reduce(x_out, tmp);
felem_assign(ftmp3, ftmp4);
felem_scalar(ftmp4, 2);
felem_sum(ftmp4, ftmp2);
/* ftmp4[i] < 2*2^101 + 2^101 < 2^103 */
felem_diff(x_out, ftmp4);
/* x_out[i] < 2^105 + 2^101 */
/* y_out = r(V-x_out) - 2 * s1 * J */
felem_diff_zero107(ftmp3, x_out);
/* ftmp3[i] < 2^107 + 2^101 < 2^108 */
felem_small_mul(tmp, small1, ftmp3);
felem_mul(tmp2, ftmp6, ftmp2);
longfelem_scalar(tmp2, 2);
/* tmp2[i] < 2*2^67 = 2^68 */
longfelem_diff(tmp, tmp2);
/* tmp[i] < 2^67 + 2^70 + 2^40 < 2^71 */
felem_reduce_zero105(y_out, tmp);
/* y_out[i] < 2^106 */
copy_small_conditional(x_out, x2, z1_is_zero);
copy_conditional(x_out, x1, z2_is_zero);
copy_small_conditional(y_out, y2, z1_is_zero);
copy_conditional(y_out, y1, z2_is_zero);
copy_small_conditional(z_out, z2, z1_is_zero);
copy_conditional(z_out, z1, z2_is_zero);
felem_assign(x3, x_out);
felem_assign(y3, y_out);
felem_assign(z3, z_out);
}
/* point_add_small is the same as point_add, except that it operates on
* smallfelems */
static void point_add_small(smallfelem x3, smallfelem y3, smallfelem z3,
smallfelem x1, smallfelem y1, smallfelem z1,
smallfelem x2, smallfelem y2, smallfelem z2)
{
felem felem_x3, felem_y3, felem_z3;
felem felem_x1, felem_y1, felem_z1;
smallfelem_expand(felem_x1, x1);
smallfelem_expand(felem_y1, y1);
smallfelem_expand(felem_z1, z1);
point_add(felem_x3, felem_y3, felem_z3, felem_x1, felem_y1, felem_z1, 0, x2, y2, z2);
felem_shrink(x3, felem_x3);
felem_shrink(y3, felem_y3);
felem_shrink(z3, felem_z3);
}
/* Base point pre computation
* --------------------------
*
* Two different sorts of precomputed tables are used in the following code.
* Each contain various points on the curve, where each point is three field
* elements (x, y, z).
*
* For the base point table, z is usually 1 (0 for the point at infinity).
* This table has 2 * 16 elements, starting with the following:
* index | bits | point
* ------+---------+------------------------------
* 0 | 0 0 0 0 | 0G
* 1 | 0 0 0 1 | 1G
* 2 | 0 0 1 0 | 2^64G
* 3 | 0 0 1 1 | (2^64 + 1)G
* 4 | 0 1 0 0 | 2^128G
* 5 | 0 1 0 1 | (2^128 + 1)G
* 6 | 0 1 1 0 | (2^128 + 2^64)G
* 7 | 0 1 1 1 | (2^128 + 2^64 + 1)G
* 8 | 1 0 0 0 | 2^192G
* 9 | 1 0 0 1 | (2^192 + 1)G
* 10 | 1 0 1 0 | (2^192 + 2^64)G
* 11 | 1 0 1 1 | (2^192 + 2^64 + 1)G
* 12 | 1 1 0 0 | (2^192 + 2^128)G
* 13 | 1 1 0 1 | (2^192 + 2^128 + 1)G
* 14 | 1 1 1 0 | (2^192 + 2^128 + 2^64)G
* 15 | 1 1 1 1 | (2^192 + 2^128 + 2^64 + 1)G
* followed by a copy of this with each element multiplied by 2^32.
*
* The reason for this is so that we can clock bits into four different
* locations when doing simple scalar multiplies against the base point,
* and then another four locations using the second 16 elements.
*
* Tables for other points have table[i] = iG for i in 0 .. 16. */
/* gmul is the table of precomputed base points */
static const smallfelem gmul[2][16][3] =
{{{{0, 0, 0, 0},
{0, 0, 0, 0},
{0, 0, 0, 0}},
{{0xf4a13945d898c296, 0x77037d812deb33a0, 0xf8bce6e563a440f2, 0x6b17d1f2e12c4247},
{0xcbb6406837bf51f5, 0x2bce33576b315ece, 0x8ee7eb4a7c0f9e16, 0x4fe342e2fe1a7f9b},
{1, 0, 0, 0}},
{{0x90e75cb48e14db63, 0x29493baaad651f7e, 0x8492592e326e25de, 0x0fa822bc2811aaa5},
{0xe41124545f462ee7, 0x34b1a65050fe82f5, 0x6f4ad4bcb3df188b, 0xbff44ae8f5dba80d},
{1, 0, 0, 0}},
{{0x93391ce2097992af, 0xe96c98fd0d35f1fa, 0xb257c0de95e02789, 0x300a4bbc89d6726f},
{0xaa54a291c08127a0, 0x5bb1eeada9d806a5, 0x7f1ddb25ff1e3c6f, 0x72aac7e0d09b4644},
{1, 0, 0, 0}},
{{0x57c84fc9d789bd85, 0xfc35ff7dc297eac3, 0xfb982fd588c6766e, 0x447d739beedb5e67},
{0x0c7e33c972e25b32, 0x3d349b95a7fae500, 0xe12e9d953a4aaff7, 0x2d4825ab834131ee},
{1, 0, 0, 0}},
{{0x13949c932a1d367f, 0xef7fbd2b1a0a11b7, 0xddc6068bb91dfc60, 0xef9519328a9c72ff},
{0x196035a77376d8a8, 0x23183b0895ca1740, 0xc1ee9807022c219c, 0x611e9fc37dbb2c9b},
{1, 0, 0, 0}},
{{0xcae2b1920b57f4bc, 0x2936df5ec6c9bc36, 0x7dea6482e11238bf, 0x550663797b51f5d8},
{0x44ffe216348a964c, 0x9fb3d576dbdefbe1, 0x0afa40018d9d50e5, 0x157164848aecb851},
{1, 0, 0, 0}},
{{0xe48ecafffc5cde01, 0x7ccd84e70d715f26, 0xa2e8f483f43e4391, 0xeb5d7745b21141ea},
{0xcac917e2731a3479, 0x85f22cfe2844b645, 0x0990e6a158006cee, 0xeafd72ebdbecc17b},
{1, 0, 0, 0}},
{{0x6cf20ffb313728be, 0x96439591a3c6b94a, 0x2736ff8344315fc5, 0xa6d39677a7849276},
{0xf2bab833c357f5f4, 0x824a920c2284059b, 0x66b8babd2d27ecdf, 0x674f84749b0b8816},
{1, 0, 0, 0}},
{{0x2df48c04677c8a3e, 0x74e02f080203a56b, 0x31855f7db8c7fedb, 0x4e769e7672c9ddad},
{0xa4c36165b824bbb0, 0xfb9ae16f3b9122a5, 0x1ec0057206947281, 0x42b99082de830663},
{1, 0, 0, 0}},
{{0x6ef95150dda868b9, 0xd1f89e799c0ce131, 0x7fdc1ca008a1c478, 0x78878ef61c6ce04d},
{0x9c62b9121fe0d976, 0x6ace570ebde08d4f, 0xde53142c12309def, 0xb6cb3f5d7b72c321},
{1, 0, 0, 0}},
{{0x7f991ed2c31a3573, 0x5b82dd5bd54fb496, 0x595c5220812ffcae, 0x0c88bc4d716b1287},
{0x3a57bf635f48aca8, 0x7c8181f4df2564f3, 0x18d1b5b39c04e6aa, 0xdd5ddea3f3901dc6},
{1, 0, 0, 0}},
{{0xe96a79fb3e72ad0c, 0x43a0a28c42ba792f, 0xefe0a423083e49f3, 0x68f344af6b317466},
{0xcdfe17db3fb24d4a, 0x668bfc2271f5c626, 0x604ed93c24d67ff3, 0x31b9c405f8540a20},
{1, 0, 0, 0}},
{{0xd36b4789a2582e7f, 0x0d1a10144ec39c28, 0x663c62c3edbad7a0, 0x4052bf4b6f461db9},
{0x235a27c3188d25eb, 0xe724f33999bfcc5b, 0x862be6bd71d70cc8, 0xfecf4d5190b0fc61},
{1, 0, 0, 0}},
{{0x74346c10a1d4cfac, 0xafdf5cc08526a7a4, 0x123202a8f62bff7a, 0x1eddbae2c802e41a},
{0x8fa0af2dd603f844, 0x36e06b7e4c701917, 0x0c45f45273db33a0, 0x43104d86560ebcfc},
{1, 0, 0, 0}},
{{0x9615b5110d1d78e5, 0x66b0de3225c4744b, 0x0a4a46fb6aaf363a, 0xb48e26b484f7a21c},
{0x06ebb0f621a01b2d, 0xc004e4048b7b0f98, 0x64131bcdfed6f668, 0xfac015404d4d3dab},
{1, 0, 0, 0}}},
{{{0, 0, 0, 0},
{0, 0, 0, 0},
{0, 0, 0, 0}},
{{0x3a5a9e22185a5943, 0x1ab919365c65dfb6, 0x21656b32262c71da, 0x7fe36b40af22af89},
{0xd50d152c699ca101, 0x74b3d5867b8af212, 0x9f09f40407dca6f1, 0xe697d45825b63624},
{1, 0, 0, 0}},
{{0xa84aa9397512218e, 0xe9a521b074ca0141, 0x57880b3a18a2e902, 0x4a5b506612a677a6},
{0x0beada7a4c4f3840, 0x626db15419e26d9d, 0xc42604fbe1627d40, 0xeb13461ceac089f1},
{1, 0, 0, 0}},
{{0xf9faed0927a43281, 0x5e52c4144103ecbc, 0xc342967aa815c857, 0x0781b8291c6a220a},
{0x5a8343ceeac55f80, 0x88f80eeee54a05e3, 0x97b2a14f12916434, 0x690cde8df0151593},
{1, 0, 0, 0}},
{{0xaee9c75df7f82f2a, 0x9e4c35874afdf43a, 0xf5622df437371326, 0x8a535f566ec73617},
{0xc5f9a0ac223094b7, 0xcde533864c8c7669, 0x37e02819085a92bf, 0x0455c08468b08bd7},
{1, 0, 0, 0}},
{{0x0c0a6e2c9477b5d9, 0xf9a4bf62876dc444, 0x5050a949b6cdc279, 0x06bada7ab77f8276},
{0xc8b4aed1ea48dac9, 0xdebd8a4b7ea1070f, 0x427d49101366eb70, 0x5b476dfd0e6cb18a},
{1, 0, 0, 0}},
{{0x7c5c3e44278c340a, 0x4d54606812d66f3b, 0x29a751b1ae23c5d8, 0x3e29864e8a2ec908},
{0x142d2a6626dbb850, 0xad1744c4765bd780, 0x1f150e68e322d1ed, 0x239b90ea3dc31e7e},
{1, 0, 0, 0}},
{{0x78c416527a53322a, 0x305dde6709776f8e, 0xdbcab759f8862ed4, 0x820f4dd949f72ff7},
{0x6cc544a62b5debd4, 0x75be5d937b4e8cc4, 0x1b481b1b215c14d3, 0x140406ec783a05ec},
{1, 0, 0, 0}},
{{0x6a703f10e895df07, 0xfd75f3fa01876bd8, 0xeb5b06e70ce08ffe, 0x68f6b8542783dfee},
{0x90c76f8a78712655, 0xcf5293d2f310bf7f, 0xfbc8044dfda45028, 0xcbe1feba92e40ce6},
{1, 0, 0, 0}},
{{0xe998ceea4396e4c1, 0xfc82ef0b6acea274, 0x230f729f2250e927, 0xd0b2f94d2f420109},
{0x4305adddb38d4966, 0x10b838f8624c3b45, 0x7db2636658954e7a, 0x971459828b0719e5},
{1, 0, 0, 0}},
{{0x4bd6b72623369fc9, 0x57f2929e53d0b876, 0xc2d5cba4f2340687, 0x961610004a866aba},
{0x49997bcd2e407a5e, 0x69ab197d92ddcb24, 0x2cf1f2438fe5131c, 0x7acb9fadcee75e44},
{1, 0, 0, 0}},
{{0x254e839423d2d4c0, 0xf57f0c917aea685b, 0xa60d880f6f75aaea, 0x24eb9acca333bf5b},
{0xe3de4ccb1cda5dea, 0xfeef9341c51a6b4f, 0x743125f88bac4c4d, 0x69f891c5acd079cc},
{1, 0, 0, 0}},
{{0xeee44b35702476b5, 0x7ed031a0e45c2258, 0xb422d1e7bd6f8514, 0xe51f547c5972a107},
{0xa25bcd6fc9cf343d, 0x8ca922ee097c184e, 0xa62f98b3a9fe9a06, 0x1c309a2b25bb1387},
{1, 0, 0, 0}},
{{0x9295dbeb1967c459, 0xb00148833472c98e, 0xc504977708011828, 0x20b87b8aa2c4e503},
{0x3063175de057c277, 0x1bd539338fe582dd, 0x0d11adef5f69a044, 0xf5c6fa49919776be},
{1, 0, 0, 0}},
{{0x8c944e760fd59e11, 0x3876cba1102fad5f, 0xa454c3fad83faa56, 0x1ed7d1b9332010b9},
{0xa1011a270024b889, 0x05e4d0dcac0cd344, 0x52b520f0eb6a2a24, 0x3a2b03f03217257a},
{1, 0, 0, 0}},
{{0xf20fc2afdf1d043d, 0xf330240db58d5a62, 0xfc7d229ca0058c3b, 0x15fee545c78dd9f6},
{0x501e82885bc98cda, 0x41ef80e5d046ac04, 0x557d9f49461210fb, 0x4ab5b6b2b8753f81},
{1, 0, 0, 0}}}};
/* select_point selects the |idx|th point from a precomputation table and
* copies it to out. */
static void select_point(const u64 idx, unsigned int size, const smallfelem pre_comp[16][3], smallfelem out[3])
{
unsigned i, j;
u64 *outlimbs = &out[0][0];
memset(outlimbs, 0, 3 * sizeof(smallfelem));
for (i = 0; i < size; i++)
{
const u64 *inlimbs = (u64*) &pre_comp[i][0][0];
u64 mask = i ^ idx;
mask |= mask >> 4;
mask |= mask >> 2;
mask |= mask >> 1;
mask &= 1;
mask--;
for (j = 0; j < NLIMBS * 3; j++)
outlimbs[j] |= inlimbs[j] & mask;
}
}
/* get_bit returns the |i|th bit in |in| */
static char get_bit(const felem_bytearray in, int i)
{
if ((i < 0) || (i >= 256))
return 0;
return (in[i >> 3] >> (i & 7)) & 1;
}
/* Interleaved point multiplication using precomputed point multiples:
* The small point multiples 0*P, 1*P, ..., 17*P are in pre_comp[],
* the scalars in scalars[]. If g_scalar is non-NULL, we also add this multiple
* of the generator, using certain (large) precomputed multiples in g_pre_comp.
* Output point (X, Y, Z) is stored in x_out, y_out, z_out */
static void batch_mul(felem x_out, felem y_out, felem z_out,
const felem_bytearray scalars[], const unsigned num_points, const u8 *g_scalar,
const int mixed, const smallfelem pre_comp[][17][3], const smallfelem g_pre_comp[2][16][3])
{
int i, skip;
unsigned num, gen_mul = (g_scalar != NULL);
felem nq[3], ftmp;
smallfelem tmp[3];
u64 bits;
u8 sign, digit;
/* set nq to the point at infinity */
memset(nq, 0, 3 * sizeof(felem));
/* Loop over all scalars msb-to-lsb, interleaving additions
* of multiples of the generator (two in each of the last 32 rounds)
* and additions of other points multiples (every 5th round).
*/
skip = 1; /* save two point operations in the first round */
for (i = (num_points ? 255 : 31); i >= 0; --i)
{
/* double */
if (!skip)
point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
/* add multiples of the generator */
if (gen_mul && (i <= 31))
{
/* first, look 32 bits upwards */
bits = get_bit(g_scalar, i + 224) << 3;
bits |= get_bit(g_scalar, i + 160) << 2;
bits |= get_bit(g_scalar, i + 96) << 1;
bits |= get_bit(g_scalar, i + 32);
/* select the point to add, in constant time */
select_point(bits, 16, g_pre_comp[1], tmp);
if (!skip)
{
point_add(nq[0], nq[1], nq[2],
nq[0], nq[1], nq[2],
1 /* mixed */, tmp[0], tmp[1], tmp[2]);
}
else
{
smallfelem_expand(nq[0], tmp[0]);
smallfelem_expand(nq[1], tmp[1]);
smallfelem_expand(nq[2], tmp[2]);
skip = 0;
}
/* second, look at the current position */
bits = get_bit(g_scalar, i + 192) << 3;
bits |= get_bit(g_scalar, i + 128) << 2;
bits |= get_bit(g_scalar, i + 64) << 1;
bits |= get_bit(g_scalar, i);
/* select the point to add, in constant time */
select_point(bits, 16, g_pre_comp[0], tmp);
point_add(nq[0], nq[1], nq[2],
nq[0], nq[1], nq[2],
1 /* mixed */, tmp[0], tmp[1], tmp[2]);
}
/* do other additions every 5 doublings */
if (num_points && (i % 5 == 0))
{
/* loop over all scalars */
for (num = 0; num < num_points; ++num)
{
bits = get_bit(scalars[num], i + 4) << 5;
bits |= get_bit(scalars[num], i + 3) << 4;
bits |= get_bit(scalars[num], i + 2) << 3;
bits |= get_bit(scalars[num], i + 1) << 2;
bits |= get_bit(scalars[num], i) << 1;
bits |= get_bit(scalars[num], i - 1);
ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
/* select the point to add or subtract, in constant time */
select_point(digit, 17, pre_comp[num], tmp);
smallfelem_neg(ftmp, tmp[1]); /* (X, -Y, Z) is the negative point */
copy_small_conditional(ftmp, tmp[1], (((limb) sign) - 1));
felem_contract(tmp[1], ftmp);
if (!skip)
{
point_add(nq[0], nq[1], nq[2],
nq[0], nq[1], nq[2],
mixed, tmp[0], tmp[1], tmp[2]);
}
else
{
smallfelem_expand(nq[0], tmp[0]);
smallfelem_expand(nq[1], tmp[1]);
smallfelem_expand(nq[2], tmp[2]);
skip = 0;
}
}
}
}
felem_assign(x_out, nq[0]);
felem_assign(y_out, nq[1]);
felem_assign(z_out, nq[2]);
}
/* Precomputation for the group generator. */
typedef struct {
smallfelem g_pre_comp[2][16][3];
int references;
} NISTP256_PRE_COMP;
const EC_METHOD *EC_GFp_nistp256_method(void)
{
static const EC_METHOD ret = {
EC_FLAGS_DEFAULT_OCT,
NID_X9_62_prime_field,
ec_GFp_nistp256_group_init,
ec_GFp_simple_group_finish,
ec_GFp_simple_group_clear_finish,
ec_GFp_nist_group_copy,
ec_GFp_nistp256_group_set_curve,
ec_GFp_simple_group_get_curve,
ec_GFp_simple_group_get_degree,
ec_GFp_simple_group_check_discriminant,
ec_GFp_simple_point_init,
ec_GFp_simple_point_finish,
ec_GFp_simple_point_clear_finish,
ec_GFp_simple_point_copy,
ec_GFp_simple_point_set_to_infinity,
ec_GFp_simple_set_Jprojective_coordinates_GFp,
ec_GFp_simple_get_Jprojective_coordinates_GFp,
ec_GFp_simple_point_set_affine_coordinates,
ec_GFp_nistp256_point_get_affine_coordinates,
0 /* point_set_compressed_coordinates */,
0 /* point2oct */,
0 /* oct2point */,
ec_GFp_simple_add,
ec_GFp_simple_dbl,
ec_GFp_simple_invert,
ec_GFp_simple_is_at_infinity,
ec_GFp_simple_is_on_curve,
ec_GFp_simple_cmp,
ec_GFp_simple_make_affine,
ec_GFp_simple_points_make_affine,
ec_GFp_nistp256_points_mul,
ec_GFp_nistp256_precompute_mult,
ec_GFp_nistp256_have_precompute_mult,
ec_GFp_nist_field_mul,
ec_GFp_nist_field_sqr,
0 /* field_div */,
0 /* field_encode */,
0 /* field_decode */,
0 /* field_set_to_one */ };
return &ret;
}
/******************************************************************************/
/* FUNCTIONS TO MANAGE PRECOMPUTATION
*/
static NISTP256_PRE_COMP *nistp256_pre_comp_new()
{
NISTP256_PRE_COMP *ret = NULL;
ret = (NISTP256_PRE_COMP *) OPENSSL_malloc(sizeof *ret);
if (!ret)
{
ECerr(EC_F_NISTP256_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
return ret;
}
memset(ret->g_pre_comp, 0, sizeof(ret->g_pre_comp));
ret->references = 1;
return ret;
}
static void *nistp256_pre_comp_dup(void *src_)
{
NISTP256_PRE_COMP *src = src_;
/* no need to actually copy, these objects never change! */
CRYPTO_add(&src->references, 1, CRYPTO_LOCK_EC_PRE_COMP);
return src_;
}
static void nistp256_pre_comp_free(void *pre_)
{
int i;
NISTP256_PRE_COMP *pre = pre_;
if (!pre)
return;
i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP);
if (i > 0)
return;
OPENSSL_free(pre);
}
static void nistp256_pre_comp_clear_free(void *pre_)
{
int i;
NISTP256_PRE_COMP *pre = pre_;
if (!pre)
return;
i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP);
if (i > 0)
return;
OPENSSL_cleanse(pre, sizeof *pre);
OPENSSL_free(pre);
}
/******************************************************************************/
/* OPENSSL EC_METHOD FUNCTIONS
*/
int ec_GFp_nistp256_group_init(EC_GROUP *group)
{
int ret;
ret = ec_GFp_simple_group_init(group);
group->a_is_minus3 = 1;
return ret;
}
int ec_GFp_nistp256_group_set_curve(EC_GROUP *group, const BIGNUM *p,
const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
{
int ret = 0;
BN_CTX *new_ctx = NULL;
BIGNUM *curve_p, *curve_a, *curve_b;
if (ctx == NULL)
if ((ctx = new_ctx = BN_CTX_new()) == NULL) return 0;
BN_CTX_start(ctx);
if (((curve_p = BN_CTX_get(ctx)) == NULL) ||
((curve_a = BN_CTX_get(ctx)) == NULL) ||
((curve_b = BN_CTX_get(ctx)) == NULL)) goto err;
BN_bin2bn(nistp256_curve_params[0], sizeof(felem_bytearray), curve_p);
BN_bin2bn(nistp256_curve_params[1], sizeof(felem_bytearray), curve_a);
BN_bin2bn(nistp256_curve_params[2], sizeof(felem_bytearray), curve_b);
if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) ||
(BN_cmp(curve_b, b)))
{
ECerr(EC_F_EC_GFP_NISTP256_GROUP_SET_CURVE,
EC_R_WRONG_CURVE_PARAMETERS);
goto err;
}
group->field_mod_func = BN_nist_mod_256;
ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
err:
BN_CTX_end(ctx);
if (new_ctx != NULL)
BN_CTX_free(new_ctx);
return ret;
}
/* Takes the Jacobian coordinates (X, Y, Z) of a point and returns
* (X', Y') = (X/Z^2, Y/Z^3) */
int ec_GFp_nistp256_point_get_affine_coordinates(const EC_GROUP *group,
const EC_POINT *point, BIGNUM *x, BIGNUM *y, BN_CTX *ctx)
{
felem z1, z2, x_in, y_in;
smallfelem x_out, y_out;
longfelem tmp;
if (EC_POINT_is_at_infinity(group, point))
{
ECerr(EC_F_EC_GFP_NISTP256_POINT_GET_AFFINE_COORDINATES,
EC_R_POINT_AT_INFINITY);
return 0;
}
if ((!BN_to_felem(x_in, &point->X)) || (!BN_to_felem(y_in, &point->Y)) ||
(!BN_to_felem(z1, &point->Z))) return 0;
felem_inv(z2, z1);
felem_square(tmp, z2); felem_reduce(z1, tmp);
felem_mul(tmp, x_in, z1); felem_reduce(x_in, tmp);
felem_contract(x_out, x_in);
if (x != NULL)
{
if (!smallfelem_to_BN(x, x_out)) {
ECerr(EC_F_EC_GFP_NISTP256_POINT_GET_AFFINE_COORDINATES,
ERR_R_BN_LIB);
return 0;
}
}
felem_mul(tmp, z1, z2); felem_reduce(z1, tmp);
felem_mul(tmp, y_in, z1); felem_reduce(y_in, tmp);
felem_contract(y_out, y_in);
if (y != NULL)
{
if (!smallfelem_to_BN(y, y_out))
{
ECerr(EC_F_EC_GFP_NISTP256_POINT_GET_AFFINE_COORDINATES,
ERR_R_BN_LIB);
return 0;
}
}
return 1;
}
static void make_points_affine(size_t num, smallfelem points[/* num */][3], smallfelem tmp_smallfelems[/* num+1 */])
{
/* Runs in constant time, unless an input is the point at infinity
* (which normally shouldn't happen). */
ec_GFp_nistp_points_make_affine_internal(
num,
points,
sizeof(smallfelem),
tmp_smallfelems,
(void (*)(void *)) smallfelem_one,
(int (*)(const void *)) smallfelem_is_zero_int,
(void (*)(void *, const void *)) smallfelem_assign,
(void (*)(void *, const void *)) smallfelem_square_contract,
(void (*)(void *, const void *, const void *)) smallfelem_mul_contract,
(void (*)(void *, const void *)) smallfelem_inv_contract,
(void (*)(void *, const void *)) smallfelem_assign /* nothing to contract */);
}
/* Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL values
* Result is stored in r (r can equal one of the inputs). */
int ec_GFp_nistp256_points_mul(const EC_GROUP *group, EC_POINT *r,
const BIGNUM *scalar, size_t num, const EC_POINT *points[],
const BIGNUM *scalars[], BN_CTX *ctx)
{
int ret = 0;
int j;
int mixed = 0;
BN_CTX *new_ctx = NULL;
BIGNUM *x, *y, *z, *tmp_scalar;
felem_bytearray g_secret;
felem_bytearray *secrets = NULL;
smallfelem (*pre_comp)[17][3] = NULL;
smallfelem *tmp_smallfelems = NULL;
felem_bytearray tmp;
unsigned i, num_bytes;
int have_pre_comp = 0;
size_t num_points = num;
smallfelem x_in, y_in, z_in;
felem x_out, y_out, z_out;
NISTP256_PRE_COMP *pre = NULL;
const smallfelem (*g_pre_comp)[16][3] = NULL;
EC_POINT *generator = NULL;
const EC_POINT *p = NULL;
const BIGNUM *p_scalar = NULL;
if (ctx == NULL)
if ((ctx = new_ctx = BN_CTX_new()) == NULL) return 0;
BN_CTX_start(ctx);
if (((x = BN_CTX_get(ctx)) == NULL) ||
((y = BN_CTX_get(ctx)) == NULL) ||
((z = BN_CTX_get(ctx)) == NULL) ||
((tmp_scalar = BN_CTX_get(ctx)) == NULL))
goto err;
if (scalar != NULL)
{
pre = EC_EX_DATA_get_data(group->extra_data,
nistp256_pre_comp_dup, nistp256_pre_comp_free,
nistp256_pre_comp_clear_free);
if (pre)
/* we have precomputation, try to use it */
g_pre_comp = (const smallfelem (*)[16][3]) pre->g_pre_comp;
else
/* try to use the standard precomputation */
g_pre_comp = &gmul[0];
generator = EC_POINT_new(group);
if (generator == NULL)
goto err;
/* get the generator from precomputation */
if (!smallfelem_to_BN(x, g_pre_comp[0][1][0]) ||
!smallfelem_to_BN(y, g_pre_comp[0][1][1]) ||
!smallfelem_to_BN(z, g_pre_comp[0][1][2]))
{
ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB);
goto err;
}
if (!EC_POINT_set_Jprojective_coordinates_GFp(group,
generator, x, y, z, ctx))
goto err;
if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
/* precomputation matches generator */
have_pre_comp = 1;
else
/* we don't have valid precomputation:
* treat the generator as a random point */
num_points++;
}
if (num_points > 0)
{
if (num_points >= 3)
{
/* unless we precompute multiples for just one or two points,
* converting those into affine form is time well spent */
mixed = 1;
}
secrets = OPENSSL_malloc(num_points * sizeof(felem_bytearray));
pre_comp = OPENSSL_malloc(num_points * 17 * 3 * sizeof(smallfelem));
if (mixed)
tmp_smallfelems = OPENSSL_malloc((num_points * 17 + 1) * sizeof(smallfelem));
if ((secrets == NULL) || (pre_comp == NULL) || (mixed && (tmp_smallfelems == NULL)))
{
ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_MALLOC_FAILURE);
goto err;
}
/* we treat NULL scalars as 0, and NULL points as points at infinity,
* i.e., they contribute nothing to the linear combination */
memset(secrets, 0, num_points * sizeof(felem_bytearray));
memset(pre_comp, 0, num_points * 17 * 3 * sizeof(smallfelem));
for (i = 0; i < num_points; ++i)
{
if (i == num)
/* we didn't have a valid precomputation, so we pick
* the generator */
{
p = EC_GROUP_get0_generator(group);
p_scalar = scalar;
}
else
/* the i^th point */
{
p = points[i];
p_scalar = scalars[i];
}
if ((p_scalar != NULL) && (p != NULL))
{
/* reduce scalar to 0 <= scalar < 2^256 */
if ((BN_num_bits(p_scalar) > 256) || (BN_is_negative(p_scalar)))
{
/* this is an unusual input, and we don't guarantee
* constant-timeness */
if (!BN_nnmod(tmp_scalar, p_scalar, &group->order, ctx))
{
ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB);
goto err;
}
num_bytes = BN_bn2bin(tmp_scalar, tmp);
}
else
num_bytes = BN_bn2bin(p_scalar, tmp);
flip_endian(secrets[i], tmp, num_bytes);
/* precompute multiples */
if ((!BN_to_felem(x_out, &p->X)) ||
(!BN_to_felem(y_out, &p->Y)) ||
(!BN_to_felem(z_out, &p->Z))) goto err;
felem_shrink(pre_comp[i][1][0], x_out);
felem_shrink(pre_comp[i][1][1], y_out);
felem_shrink(pre_comp[i][1][2], z_out);
for (j = 2; j <= 16; ++j)
{
if (j & 1)
{
point_add_small(
pre_comp[i][j][0], pre_comp[i][j][1], pre_comp[i][j][2],
pre_comp[i][1][0], pre_comp[i][1][1], pre_comp[i][1][2],
pre_comp[i][j-1][0], pre_comp[i][j-1][1], pre_comp[i][j-1][2]);
}
else
{
point_double_small(
pre_comp[i][j][0], pre_comp[i][j][1], pre_comp[i][j][2],
pre_comp[i][j/2][0], pre_comp[i][j/2][1], pre_comp[i][j/2][2]);
}
}
}
}
if (mixed)
make_points_affine(num_points * 17, pre_comp[0], tmp_smallfelems);
}
/* the scalar for the generator */
if ((scalar != NULL) && (have_pre_comp))
{
memset(g_secret, 0, sizeof(g_secret));
/* reduce scalar to 0 <= scalar < 2^256 */
if ((BN_num_bits(scalar) > 256) || (BN_is_negative(scalar)))
{
/* this is an unusual input, and we don't guarantee
* constant-timeness */
if (!BN_nnmod(tmp_scalar, scalar, &group->order, ctx))
{
ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB);
goto err;
}
num_bytes = BN_bn2bin(tmp_scalar, tmp);
}
else
num_bytes = BN_bn2bin(scalar, tmp);
flip_endian(g_secret, tmp, num_bytes);
/* do the multiplication with generator precomputation*/
batch_mul(x_out, y_out, z_out,
(const felem_bytearray (*)) secrets, num_points,
g_secret,
mixed, (const smallfelem (*)[17][3]) pre_comp,
g_pre_comp);
}
else
/* do the multiplication without generator precomputation */
batch_mul(x_out, y_out, z_out,
(const felem_bytearray (*)) secrets, num_points,
NULL, mixed, (const smallfelem (*)[17][3]) pre_comp, NULL);
/* reduce the output to its unique minimal representation */
felem_contract(x_in, x_out);
felem_contract(y_in, y_out);
felem_contract(z_in, z_out);
if ((!smallfelem_to_BN(x, x_in)) || (!smallfelem_to_BN(y, y_in)) ||
(!smallfelem_to_BN(z, z_in)))
{
ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB);
goto err;
}
ret = EC_POINT_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx);
err:
BN_CTX_end(ctx);
if (generator != NULL)
EC_POINT_free(generator);
if (new_ctx != NULL)
BN_CTX_free(new_ctx);
if (secrets != NULL)
OPENSSL_free(secrets);
if (pre_comp != NULL)
OPENSSL_free(pre_comp);
if (tmp_smallfelems != NULL)
OPENSSL_free(tmp_smallfelems);
return ret;
}
int ec_GFp_nistp256_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
{
int ret = 0;
NISTP256_PRE_COMP *pre = NULL;
int i, j;
BN_CTX *new_ctx = NULL;
BIGNUM *x, *y;
EC_POINT *generator = NULL;
smallfelem tmp_smallfelems[32];
felem x_tmp, y_tmp, z_tmp;
/* throw away old precomputation */
EC_EX_DATA_free_data(&group->extra_data, nistp256_pre_comp_dup,
nistp256_pre_comp_free, nistp256_pre_comp_clear_free);
if (ctx == NULL)
if ((ctx = new_ctx = BN_CTX_new()) == NULL) return 0;
BN_CTX_start(ctx);
if (((x = BN_CTX_get(ctx)) == NULL) ||
((y = BN_CTX_get(ctx)) == NULL))
goto err;
/* get the generator */
if (group->generator == NULL) goto err;
generator = EC_POINT_new(group);
if (generator == NULL)
goto err;
BN_bin2bn(nistp256_curve_params[3], sizeof (felem_bytearray), x);
BN_bin2bn(nistp256_curve_params[4], sizeof (felem_bytearray), y);
if (!EC_POINT_set_affine_coordinates_GFp(group, generator, x, y, ctx))
goto err;
if ((pre = nistp256_pre_comp_new()) == NULL)
goto err;
/* if the generator is the standard one, use built-in precomputation */
if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
{
memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
ret = 1;
goto err;
}
if ((!BN_to_felem(x_tmp, &group->generator->X)) ||
(!BN_to_felem(y_tmp, &group->generator->Y)) ||
(!BN_to_felem(z_tmp, &group->generator->Z)))
goto err;
felem_shrink(pre->g_pre_comp[0][1][0], x_tmp);
felem_shrink(pre->g_pre_comp[0][1][1], y_tmp);
felem_shrink(pre->g_pre_comp[0][1][2], z_tmp);
/* compute 2^64*G, 2^128*G, 2^192*G for the first table,
* 2^32*G, 2^96*G, 2^160*G, 2^224*G for the second one
*/
for (i = 1; i <= 8; i <<= 1)
{
point_double_small(
pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2],
pre->g_pre_comp[0][i][0], pre->g_pre_comp[0][i][1], pre->g_pre_comp[0][i][2]);
for (j = 0; j < 31; ++j)
{
point_double_small(
pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2],
pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]);
}
if (i == 8)
break;
point_double_small(
pre->g_pre_comp[0][2*i][0], pre->g_pre_comp[0][2*i][1], pre->g_pre_comp[0][2*i][2],
pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]);
for (j = 0; j < 31; ++j)
{
point_double_small(
pre->g_pre_comp[0][2*i][0], pre->g_pre_comp[0][2*i][1], pre->g_pre_comp[0][2*i][2],
pre->g_pre_comp[0][2*i][0], pre->g_pre_comp[0][2*i][1], pre->g_pre_comp[0][2*i][2]);
}
}
for (i = 0; i < 2; i++)
{
/* g_pre_comp[i][0] is the point at infinity */
memset(pre->g_pre_comp[i][0], 0, sizeof(pre->g_pre_comp[i][0]));
/* the remaining multiples */
/* 2^64*G + 2^128*G resp. 2^96*G + 2^160*G */
point_add_small(
pre->g_pre_comp[i][6][0], pre->g_pre_comp[i][6][1], pre->g_pre_comp[i][6][2],
pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2],
pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1], pre->g_pre_comp[i][2][2]);
/* 2^64*G + 2^192*G resp. 2^96*G + 2^224*G */
point_add_small(
pre->g_pre_comp[i][10][0], pre->g_pre_comp[i][10][1], pre->g_pre_comp[i][10][2],
pre->g_pre_comp[i][8][0], pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1], pre->g_pre_comp[i][2][2]);
/* 2^128*G + 2^192*G resp. 2^160*G + 2^224*G */
point_add_small(
pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2],
pre->g_pre_comp[i][8][0], pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2]);
/* 2^64*G + 2^128*G + 2^192*G resp. 2^96*G + 2^160*G + 2^224*G */
point_add_small(
pre->g_pre_comp[i][14][0], pre->g_pre_comp[i][14][1], pre->g_pre_comp[i][14][2],
pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2],
pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1], pre->g_pre_comp[i][2][2]);
for (j = 1; j < 8; ++j)
{
/* odd multiples: add G resp. 2^32*G */
point_add_small(
pre->g_pre_comp[i][2*j+1][0], pre->g_pre_comp[i][2*j+1][1], pre->g_pre_comp[i][2*j+1][2],
pre->g_pre_comp[i][2*j][0], pre->g_pre_comp[i][2*j][1], pre->g_pre_comp[i][2*j][2],
pre->g_pre_comp[i][1][0], pre->g_pre_comp[i][1][1], pre->g_pre_comp[i][1][2]);
}
}
make_points_affine(31, &(pre->g_pre_comp[0][1]), tmp_smallfelems);
if (!EC_EX_DATA_set_data(&group->extra_data, pre, nistp256_pre_comp_dup,
nistp256_pre_comp_free, nistp256_pre_comp_clear_free))
goto err;
ret = 1;
pre = NULL;
err:
BN_CTX_end(ctx);
if (generator != NULL)
EC_POINT_free(generator);
if (new_ctx != NULL)
BN_CTX_free(new_ctx);
if (pre)
nistp256_pre_comp_free(pre);
return ret;
}
int ec_GFp_nistp256_have_precompute_mult(const EC_GROUP *group)
{
if (EC_EX_DATA_get_data(group->extra_data, nistp256_pre_comp_dup,
nistp256_pre_comp_free, nistp256_pre_comp_clear_free)
!= NULL)
return 1;
else
return 0;
}
#else
static void *dummy=&dummy;
#endif
| N4m3 |
5!z3 |
L45t M0d!f!3d |
0wn3r / Gr0up |
P3Rm!55!0n5 |
0pt!0n5 |
| .. |
-- |
December 16 2014 08:29:48 |
0 / 0 |
0755 |
|
| | | | | |
| Makefile |
14.23 KB |
April 07 2014 16:55:29 |
0 / 0 |
0664 |
|
| Makefile.save |
14.23 KB |
April 07 2014 16:55:28 |
0 / 0 |
0664 |
|
| ec.h |
45.325 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| ec2_mult.c |
12.142 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| ec2_oct.c |
10.795 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| ec2_smpl.c |
18.676 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| ec_ameth.c |
15.247 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| ec_asn1.c |
34.418 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| ec_check.c |
3.99 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| ec_curve.c |
88.115 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| ec_cvt.c |
5.696 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| ec_err.c |
15.668 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| ec_key.c |
13.212 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| ec_lcl.h |
21.397 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| ec_lib.c |
25.051 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| ec_mult.c |
23.106 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| ec_oct.c |
6.611 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| ec_pmeth.c |
7.947 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| ec_print.c |
5.401 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| eck_prn.c |
9.667 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| ecp_mont.c |
8.346 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| ecp_nist.c |
6.418 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| ecp_nistp224.c |
51.553 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| ecp_nistp256.c |
63.396 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| ecp_nistp521.c |
61.758 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| ecp_nistputil.c |
7.655 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| ecp_oct.c |
11.048 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| ecp_smpl.c |
32.362 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
| ectest.c |
49.206 KB |
March 17 2014 16:14:20 |
0 / 0 |
0664 |
|
$.' ",#(7),01444'9=82<.342ÿÛ C
2!!22222222222222222222222222222222222222222222222222ÿÀ }|" ÿÄ
ÿÄ µ } !1AQa "q2‘¡#B±ÁRÑð$3br‚
%&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyzƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚáâãäåæçèéêñòóôõö÷øùúÿÄ
ÿÄ µ w !1AQ aq"2B‘¡±Á #3RðbrÑ
$4á%ñ&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz‚ƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚâãäåæçèéêòóôõö÷øùúÿÚ ? ÷HR÷j¹ûA <̃.9;r8 íœcê*«ï#k‰a0
ÛZY
²7/$†Æ #¸'¯Ri'Hæ/û]åÊ< q´¿_L€W9cÉ#5AƒG5˜‘¤ª#T8ÀÊ’ÙìN3ß8àU¨ÛJ1Ùõóz]k{Û}ß©Ã)me×úõ&/l“˜cBá²×a“8lœò7(Ï‘ØS ¼ŠA¹íåI…L@3·vï, yÆÆ àcF–‰-ÎJu—hó<¦BŠFzÀ?tãúguR‹u#
‡{~?Ú•£=n¾qo~öôüô¸¾³$õüÑ»jò]Mä¦
>ÎÈ[¢à–?) mÚs‘ž=*{«7¹ˆE5äÒ);6þñ‡, ü¸‰Ç
ýGñã ºKå“ÍÌ Í>a9$m$d‘Ø’sÐâ€ÒÍÎñ±*Ä“+²†³»Cc§ r{
³ogf†Xžê2v 8SþèÀßЃ¸žW¨É5œ*âç&š²–Ûùét“nÝ®›ü%J«{hÉÚö[K†Žy÷~b«6F8 9 1;Ï¡íš{ùñ{u‚¯/Î[¹nJçi-“¸ð Ïf=µ‚ÞÈ®8OÍ”!c H%N@<ŽqÈlu"š…xHm®ä<*ó7•…Á
Á#‡|‘Ó¦õq“êífÛüŸ•oNÚ{ËFý;– ŠÙ–!½Òq–‹væRqŒ®?„ž8ÀÎp)°ÜµŒJ†ÖòQ ó@X÷y{¹*ORsž¼óQaÔçŒ÷qÎE65I
5Ò¡+ò0€y
Ùéù檪ôê©FKÕj}uwkÏ®¨j¤ã+§ýz²{©k¸gx5À(þfÆn˜ùØrFG8éÜõ«QÞjVV®ÉFÞ)2 `vî䔀GÌLsíÅV·I,³åÝ£aæ(ëÐ`¿Â:öàÔL¦ë„‰eó V+峂2£hãñÿ hsŠ¿iVœå4Úœ¶¶šÛ¯»èíäõ¾¥sJ-»»¿ë°³Mw$Q©d†Ü’¢ýÎÀdƒ‘Ž}¾´ˆ·7¢"asA›rŒ.v@ ÞÇj”Y´%Š–·–5\ܲõåË2Hã×°*¾d_(˜»#'<ŒîØ1œuþ!ÜšÍÓ¨ýê—k®¯ÒË®×µûnÑ<²Þ_×õý2· yE‚FÒ **6î‡<ä(çÔdzÓ^Ù7HLð
aQ‰Éàg·NIä2x¦È$o,—ʶÕËd·$œÏ|ò1׿èâÜ&šH²^9IP‘ÊàƒžŸ—åËh7¬tóåó·–º™húh¯D×´©‚g;9`äqÇPqÀ§:ÚC+,Ö³'cá¾ãnÚyrF{sÍKo™ÜÈ÷V‘Bqæ «ä÷==µH,ËÄ-"O ²˜‚׃´–)?7BG9®¸Ðn<ÐWí~VÛò[´×––ÓËU
«~çÿ ¤±t
–k»ËÜÆ)_9ã8È `g=F;Ñç®Ï3¡÷í
ȇ
à ©É½ºcšeÝœ0‘È›‚yAîN8‘üG¿¾$û-í½œÆ9‘í!ˆ9F9çxëøž*o_žIÆÖZò¥ÓºVùöõ¿w¦Ýˆæ•´ÓYÄ®³ËV£êƒæõç?áNòîn.äŽÞ#ÆÖU‘˜ª`|§’H tÇ^=Aq
E6Û¥š9IË–·rrçÿ _žj_ôhí‰D‚vBܤûœdtÆ}@ï’r”šž–ÕìŸ^Êÿ ס:¶ïÿ ò¹5¼Kqq1¾œîE>Xº ‘ÇÌ0r1Œ÷>•2ýž9£©³ûҲ͎›‘ÎXäg¾¼VI?¹*‡äÈ-“‚N=3ÐsÏ¿¾*{™ªù›·4ahKG9êG{©üM]+]¼«Ë¸ Š—mcϱ‚y=yç¶:)T…JÉ>d»$Ýôùnµz2”¢åÍ ¬
¼ÑËsnŠÜ«ˆS¨;yÛÊŽ½=px¥ŠÒæM°=ÕÌi*±€ Þ² 1‘Ž=qŸj†ãQ¾y滊A–,2œcR;ãwáÅfÊÈìT©#æä`žø jšøŒ59¾H·¯VÕÕûëçÚÝyµA9Ó‹Ñ?Çúþºš—QÇ
ÔvòßNqù«¼!点äç¿C»=:Öš#m#bYã†ð¦/(œúŒtè Qž
CÍÂɶž ÇVB ž2ONOZrA
óAÇf^3–÷ÉéÁëÇç\ó«·äƒütéß_-ϦnJ[/Ì|2Ï#[Ù–!’,Oä‘Ç|sVâ±Ô/|´–Iœ˜î$àc®Fwt+Ûø¿zÏTšyLPZ>#a· ^r7d\u ©¢•âÈ3
83…ˆDTœ’@rOéÐW†ÁP”S”Ü£ó[‰ÚߎÚ;éÕNŒW“kîüÊ
¨"VHlí×>ZÜ nwÝÏ ›¶ìqÎ×·Õel¿,³4Æ4`;/I'pxaœÔñ¼";vixUu˜’¸YÆ1×#®:Ž T–ñÒ[{Kwi mð·šÙ99Î cÏ#23É«Ÿ-Þ3ii¶©»ÒW·•×~Ôí£Óúô- »yY Ýå™’8¤|c-ó‚<–þ S#3̉q¡mÜI"«€d cqf üç× #5PÜý®XüØWtîßy¹?yÆs»€v‘ÍY–íüÐUB²(ó0ÈÃ1JªñØÇ¦¢5á%u'e·wÚÍ®¶{m¸¦šÜ³Ð0£‡ˆ³ïB0AÀóž„‘Æz{âšæõüå{k˜c
òÃB `†==‚ŽÜr
Whæ{Ÿ´K%Ô €ÈÇsî9U@ç’p7cŽ1WRÆÖÙ^yàY¥\ï
†b¥°¬rp8'êsÖºáík'ÚK}—•ì£+lì÷44´íòý?«Ö÷0¤I"Ú³.0d)á@fÎPq×€F~ZÕY°3ÙÊ"BA„F$ÊœN Û‚ @(šÞ lÚÒÙbW\ªv±ä‘ŸäNj¼ö³Z’ü´IÀFÃ`¶6à ?!
NxÇÒ©Ò†Oª²½’·ŸM¶{êºjÚqŒ©®èþ
‰ ’&yL%?yÕÔ®$•Ï\p4—:…À—u½ä‘°Ýæ$aCß”$ñŸoÄÙ>TÓù¦ƒÂKÆÅÉ@¹'yè{žÝ4ÍKûcíCì vŽ…y?]Ol©Ê|Íê¾Þ_;üÿ Ï¡Rçånÿ rÔ’[m²»˜¡Ž4ùDŽ›Ë) $’XxËëšY8¹i•†Á!‘þpJ•V^0
Œ±õèi²Å²en%·„†8eeù²Yˆ,S†=?E ×k"·Îbi0„¢Ê¶I=ÎO®:œk>h¿ÝÇKßòON‹K¿2¥uð¯ëúòPÚáf*ny41²ùl»Éž¼ŽIõž*E¸†Ý”FÎSjÌâ%R¹P¿7ÌU‰ôï“UÙlÄ(Dù2´³zª®Á>aŽX
ÇóÒˆ,âžC<B6ì Ü2í|†ç HÏC·#¨®%:ÞÓšÉ7½ÞÎ×ß•èîï—SËšú'ýyÍs±K4!Ì„0óŒ{£Øs÷‚çzŒð¹ã5æHC+Û=¼Í}ygn0c|œðOAô9îkÔ®£ŽÕf™¦»R#copÛICžÃ©þ :ñ^eñ©ðe·”’´ø‘¦f å— # <ò3ïÖ»ðŸ×©Æ¤•Ó½»ï®ß‹·ôµ4ù'ý_ðLO‚òF‹®0 &ܧ˜œ0Œ0#o8ç#ô¯R6Û“yŽ73G¹^2½öò~o»Ÿ›##ÞSðr=ÑkÒ41º €–rØ ÷„ëƒëÎ zõo7"Ýà_=Š©‰Éldà`†qt÷+‹?æxù©%m,ö{.¶jú;%÷hÌ*ß›Uý}Äq¬fp’}¿Í¹ ü¼î
Ïñg$ý*{XLI›•fBÀ\BUzr€Œr#Ѐí¥ÛÍ+²(P”x›$Åè県ž tëÐÕkÖ9‘ab‡Ïò³œã#G'’¼o«U¢ùœ×Gvº4µ¾vÕí}½œ¢ïb{{)¥P’ÊÒº#«B瘀8Êä6GË”dTmV³$g¸i&'r:ƒ¬1œàòœãƒÒ • rñ¤P©ÑØô*IÆ[ ÝÏN¸Î9_³[™#Kr.Fí¤í*IÁ?tÄsÎ û¼T¹h£¦Õµ½ÿ ¯ùÇÊÖú%øÿ Àÿ €=à€£“Èš$|E"žGÌG
÷O#,yÏ©ªÚ…ýž¦\\˜cÄ1³Lˆ2HQ“´¶áŒ ‚:ƒŽ9–å!Š–Í‚É¾F''‘÷yÇNüûãëpÆ|=~¢D•䵕vn2„sÓžGLë
IUP´Uíw®Ú-/mm£²×Ì–ìíeý]? øÑüa¨ÞZÏeki,q‰c10PTpAÜÀg%zSß°2Ĥ¡U]®ØŠÜçžI;€èpx?_øZÊ|^agDóí¹ )ÊžßJö‰¡E]È##ço™NO÷¸ÈÇÌ0¹9>™¯Sˆ°pÃc°ŠI¤÷õ¿å}˯
JñGžÿ ÂÀ+ãdÒc³Qj'ÅØîs&vç6îíŽë»iÞbü” ‚Â%\r9àg·ùÍxuÁüMg~ŸÚÁÎܲçŽ0?*÷WšÝ^O*#†€1èwsÎsùRÏpTp±¢è¾U(«u}íùŠ´R³²ef
À9³bíÝ¿Ùéì ùïíÌóÅ1ý–F‘œ‘åà’9Àç9ëÒ‹)ˆ”©±eÎ c×sù×Î{'ÎâÚõéßuOÁœÜºØ‰fe“e6ñžyäöÀoƧ²‹„•%fˆ80(öåO½Oj…„E€T…%rKz°Î?.;{šXÙ‡ŸeUÚd!üx9þtã%wO_øoòcM-
j–ÒHX_iK#*) ž@Ž{ôǽBd¹‰RÝn–ê0«7ˆìyÀ÷Í@¬Ì¢³³’ 9é÷½?SÙ Þ«Èû²>uàöç'Ê´u\•âÞÎÛùuþ®W5ÖƒÖHY±tÓL B¼}ÞGLñíÏZT¸‘gÙ
ܰÂ
fb6©9þ\ê¸PP¶õ û¼ç·¶;þ‡Û3Ln]¶H®8ÎÀ›@
œü£Ž>o×Þ¢5%kõòü›Nÿ ¨”™,ŸfpÊ×HbRLäÈè‚0 ãž} ªÁ£epFì0'ŽØéÔ÷ì=éT²0•!…Îzt9ç¾?”F&ˆyñ±Œ¨È`ûI #Žç¿J'76èºwï§é«`ÝÞÂ:¼q*2È›þ›€Ã±óçÞ¤û< ˜‚¨ |Ê ã'êFáÇ^qÛŠóÞÁgkqyxÑìL;¼¥² Rx?‡¯Y7PŽwnù¶†û¾Ü·.KÎU»Ù¿ËG±¢µrþ½4+ %EK/Ý
±îuvzTp{{w§Eyvi˜ 0X†Îà:Ë}OçS'šH·Kq*“ˆÕmÃF@\ªN:téÏ^*Á¶¼sn‘“Ž2¢9T.½„\ýò@>˜7NFïNRÓ·wèôßEÕua'¬[þ¾cö¡ÌOæ¦âÅŠ². Ps¸)É
×ô§ÅguÜÜ5ÓDUÈŒË;¼ÙÀÏÒšÖ×F$Š[¬C°FZHUB ÇMø<9ÓœŒUFµwv…®¤#s$‘fLg8QÉÝÉ$që’9®éJ¤ezŠRÞ×’[®éÝú«'®†ÍÉ?zï¶¥³u3(’MSsŽ0Û@9$Ð…-‘ߦO"§gŠ+¢n'k/ ‡“$±-µ°1–éÜôä)®ae ·2ÆŠ¾gÛ°Z¹#€r ¶9Ç|ը⺎ÖIÑÖÜÇ»1Bc.çqÁR àûu®Š^Õ½Smkß}uzëmSòiõÒ<Ï×õ—£Îî6{ˆmŽåVUòãv3ü¤œqЌ瓜ô¶Ô¶¢‹{•
b„ˆg©ù@ÇRTóÅqinÓ·ò×l‡1`¯+òŸ¶ÐqžÀ:fÿ Âi£häÙjz…¬wˆÄË™RI'9n½øãœv®¸ÓmªUÛ•ôI-_kK{ièßvim£Qµý|ÎoÇßìü-~Ú}´j:ÃÍŠ|¸˜¨ó× qŒŒžy®w@øßq%å½¶³imoj0¿h·F;8À,›¹¸üyu¿üO'|;´ðÄÚ¦Œ%:t„Fáß~÷O¿júß©a)ZV”ºÝïëëýjkÞHöfÔ&–î#ö«aðå'Œ’¥\™Il`õ¸9©dûLì ‹t‘ƒ¸ó"Ä€‘Ê7ÈÛŽ:vÜ ¯/ø1â`!»Ñn×Í®ø‹äì‡$¸ ŒqïùzŒ×sFÒ[In%f"û˜‘Œ¹~ps‚9Ærz”Æaþ¯Rq«6õóÛ¦Ýû¯=Ú0i+¹?ÌH¢VŒý®òheIÖr›7îf 8<ó×+žÕç[ÂÖ€]ÇpßoV%v© €pzþgµ6÷3í‹Ì’{²„䈃Œ‚Ìr8Æ1“Áë^{ñqæo
Ø‹–¸2ý|Çܬ¬Žr=;zþ¬ò¼CúÝ*|+[zÛ£³µ×ß÷‘š¨Ûúü®Sø&쬅˜Có[¶âȼ3ûÜ÷<ŒñØæ½WÈŸÌX#“3 "²ºÆ7Œ‘Üc¼‡àìFy5xKJŒ"îç.r@ï×Þ½Ä-ÿ þ“}ª}’*Þ!,Fm¸Î@†9b?1W{Yæ3„`Ú¼VõŠÚÛ_kùöG.mhÎñ ôíhí§Ô$.ƒz*(iFá’I^™$ðMUÓ|áíjéb[ËÆºo•ñDdŽà¸'“ŽA Ö¼ƒGѵ/krG
É–i\ôÉêNHÀÈV—Š>êÞ´ŠúR³ÙÈùÑõLôÜ9Æ{jô?°°Kýš¥WíZ¿V—m6·E}{X~Æ?
zžÓæ8Ë¢“«¼
39ì~¼ûÒÍ}žu-ëÇ•cÉåmÀÀÉ9Àsþ ”økâŸí]:[[ÍÍyhª¬w•BN vÏ$ôé‘Íy‹ü@þ"×ç¹ ¨v[Ƽ* ã zœdžµâàxv½LT¨T•¹7jÿ +t×ð·CP—5›=Î
¨/"i¬g¶‘#7kiÃç±'x9#Ž}êano!òKD‘ílï”('¿SÔð?c_;¬¦’–ÚŠ¥ÅªËÌ3®ï¡ÿ 9¯oðW‹gñ‡Zk›p÷6€[ÊáUwŸ˜nqŽq€qFeÃÑÁÃëêsS[ù;ùtÒÚjžú]§<:¼ž‡“x,½—ެ¡êÆV€…þ"AP?ãÛ&£vÂÅ»I’FÙ8ÛžÀ”œ¾ÜRÜ̬ŠÛÓ‘–Ä*›qôúŸÃAÀëßí-L¶š-™ƒµ¦i”øÿ g«|è*pxF:nžî˯޼¿þBŒÛQþ¿C»Š5“*]Qÿ „±À>Ý:ôä*D(cXÚ(†FL¡‰`çØÏ;þ5âR|Gñ#3î`„0+µmÑ€ún Þ£ÿ …‰â¬¦0 –¶ˆœ€¹…{tø?ʯ(_çþ_Š5XY[¡Ù|Q¿ú
µŠ2︛sO* Бÿ ×â°<+à›MkÂ÷š…ij
·Ü–ˆ«ò‚?ˆœúäc½øåunû]¹Iïåè› ç ¯[ð&©¥Ýxn;6>}²’'`IË0ÁèN}zö5éâ©âr\¢0¥ñs^Ml¿«%®ýM$¥F•–ç‘Øj÷Ze¦£k
2¥ô"FqÀ`„~5Ùü+Ò¤—QºÕ†GÙ—Ë‹ çqä°=¶ÏûÔÍcá¶¡/ˆ¤[ý†iK ™°"ó•Æp;`t¯MÑt}+@²¶Óí·Ídy’3mÕË‘’zc€0 íyÎq„ž ¬4×5[_]Rë{]ì¬UZ±p÷^åØÞÈ[©&OúÝÛ‚‚s÷zžIïßó btÎΪ\ya¾U;C¤t*IÎFF3Џ™c
1žYD…U° êÄàõë\oŒ¼a ‡c[[GŽãP‘7 â znÈ>Ãü3ñ˜,=lUENŒäô¾ÚÀÓ[_ð9 œ´JçMy©E¢Àí}x,bpAó¦üdcûŒW9?Å[Há$¿¹pÄ™#^9O88©zO=«Ë!µÖüY¨³ªÍy9ûÒ1 úôÚ»M?àô÷«ÞëÖ–ÙMÌ#C&ßnJ“Üp#Ђ~²†G–àíekϵío»_žŸuΨQ„t“ÔÛ²øáû›´W6»Øoy FQÎr $Óõìk¬„‹ïÞÚ¼sÆíòÉ67\míÎyF¯ð¯TÓã’K;ë[ð·ld«7üyíšÉ𯊵 êáeYžÏq[«&vMÀðßFà}p3ÅgW‡°8ØßVín›þšõ³¹/ ü,÷ií|’‘´R,®ŠÉ‡W“Ž1ØöëÓ¾xžÖÞ¹xÞݬXZGù\’vŒž˜ÆsØúÓïí&ÒÒ{]Qž9£Ê¡ù·ÄÀ»¶áHäž™5—ìö« -&ù¤U<±ÉÆA>½ý+æg
jžö륢þNÛ=÷JÖÛfdÔ õýËúû‹ÓØB²¬fInZ8wÌÉЮ~aƒÎ=3ìx‚+/¶äÁlŠ‚?™Æü#8-œ\pqTZXtè%»»&ÚÝ#´ŠðÜžã§Í’¼{p·ß{m>ÞycP¨’¼¢0ú(Rƒë^Ž ñó¼(»y%m´ÕÙ}ÊûékB1¨þÑ®,#Q)ó‡o1T©ÜÃ*Ž‹‚yö<b‰4×H€“ìÐ.
¤²9ÌŠ>„Žãøgšñ
¯Š~)¸ßå\ÛÛoBŒa·L²œg$‚Iã¯ZÈ—Æ~%”äë—È8â)Œcƒ‘Âàu9¯b%)ÞS²¿Ïïÿ 4Öºù}Z/[H%¤vÉ#Ì’x§†b
© ³´tÜ{gn=iï%õªÇç]ܧ—!åw„SÓp ·VÈÏ¡?5Âcâb¥_ĤŠz¬—nàþÖΟñKÄöJé=ÌWèêT‹¸÷qÎჟ•q’zWUN«N/ØO^Ÿe|í¾©k{üõ4öV^ïù~G¹êzÂèº|·÷×[’Þ31†rpjg·n
Æ0Ý}kåË‹‰nîe¹ËÍ+™ÏVbrOç]'‰¼o®xÎh`¹Ç*±ÙÚ!T$d/$žN>¼WqᯅZ9ÑÒO\ÜÛê1o&,-z ~^NCgNÕéá)ÒÊ©7‰¨¯'Õþ¯þ_¿Ehîþóâ €ï¬uÛûý*ÎK9ä.â-öv<²‘×h$àãúW%ö¯~«g-ÕõÀàG~>Zú¾Iš+(šM³ Û#9äl%ðc¬ ûÝ xÖKG´x®|¸¤Ï™O:Ê8Ã’qÉcÔä‚yÇNJyËŒTj¥&µOmztjÿ ?KëaµÔù¯áýóXøãLeb¾tžAÇû`¨êGBAõ¾•:g˜’ù·,þhÀ`¬qÜ` e·~+å[±ý“âYÄjWì—µHé±ø?Nõô>½âX<5 Ç©ÏѼM¶8cܪXŽÉ^r?¼IróÈS•ZmÇ›™5»òÚÚ7ïu«&|·÷•Ά
>[©ÞXHeS$Œyà€ ÷ù²:ò2|óãDf? Z¼PD¶ÓßC(xÆ0|©ßR;ôMsÿ µ´ÔVi¬,͹›Ìxâi˜`¹,GAéÇlV§ÄýF×Yø§ê–‘:Ã=ò2³9n±ÉžØÏ@yÎWžæ±Ãàe„ÄÒN ]ïòêìú_Go'¦ŽÑ’_×õЯðR66þ!›ÑÄ gFMÙ— äžäqôÈ;ÿ eX<#%»Aö‰ãR¤ Í”Ž¹È G&¹Ÿƒ&á?¶Zˆ±keRè Kãnz·ãŠÕøÄÒÂ9j%@®×q±ÜŒý[õ-É$uíè&¤¶9zÇï·Oøï®ÄJKšÖìdü"µˆ[jײÎc;ã…B(g<9nàȯG½µŸPÓ.´Éfâ¼FŽP
31 ‘ÏR}<3šä~
Ã2xVöî Dr
Ç\›}Ý#S÷ÈÀëŽHÆI®à\OçKuäI¹†ó(”—GWî ñ³¹¸æ2¨›‹ºÚû%¾ýÖ_3ºNú¯ëúì|ÕÅÖ‰}ylM’ZËîTÿ á[ðÐñ/ˆ9Àû
¸ón3 Mòd‘÷ döª^.Êñް›BâîNp>cëÏçÍzïÃôÏ
YÍ%ª¬·ãÏ-*9ÜÂãhéŒc¾dÈêú¼Ë,. VŠ÷çeÿ n/¡¼äãõâ=‹xGQKx”|¹bÌŠD@2Œ 8'Ž àúƒŽ+áDÒ&¡¨"Œ§–Žr22 Ç·s]ŸÄ‹«ð%ÚÄ<¹ä’(×{e›HÀqÁç©Ç½`üŽÚõK饚9ƒÄ±€<–úƒú~ çðñO#Í%iKKlµ¦¾F)'Iê¬Î+Ç(`ñ¾£œdÈ’`™ºcßéé^ÿ i¸”Û\ý¡æhÔB«aq¸}ãÀÆ:ÜWƒ|FÛÿ BŒÇÀeaŸ-sÊ€:úW½ÜÝÜ<%$µ†%CóDªÀí%IÈÏʤ…ôäñÞŒ÷‘a0“ôŽÚë¤nŸoW÷0«e¶y'Å»aΗ2r’# Û°A^ý9ÉQÔõ=ù5¬£Öü.(Þ’M$~V«=éSÄFN½®©ÔWô»ÿ þHžkR‹ìÏ+µµžöê;khÚI¤m¨‹Ôš–âÖçJ¾_Z•’6a”Èô> ÕÉaÕ<%®£2n bQŠå\tÈõUÿ ø»þ‹k15‚ÃuCL$ݹp P1=Oøýs¯^u éEJ”–éêŸê½5ýzy›jÛ³á›Ûkÿ ÚOcn±ÛÏîW;boºz{ãžüVÆ¡a£a5½äÎÂks¸J@?1è¿{$ä‘=k”øsÖ^nŒ¦)ÝåXÃíùN1ØõÚOJë–xF÷h¸ Œ"Ž?x䜚ü³ì¨c*Fœ¯i;7~ñí׫Ðó¥Ë»3Ãü púw ‰°<Á%»ñž ÿ P+Û^ ¾Ye£ŽCÄŒ„/>˜>•á¶Ìm~&&À>M[hÈÈÿ [Ž•íd…RO@3^Ç(ʽ*¶ÖQZyßþ
1Vº}Ñç?¼O4Rh6R€ª£í¡ûÙ
a‚3ß·Õ
ü=mRÍ/µ9¤‚0ÑC¼Iè:cŽsÛ¾™x£ÆÐ¬ªÍöˢ샒W$•€Å{¨ÀPG
ÀÀàŸZìÍ1RÉ0´ðxEË9+Éÿ ^rEÕ—±Š„70l¼áË@û.' ¼¹Žz€N3úUÉ<3á×*?²¬‚ä†"Ùc=p íÛ'¡ª1ñ"økJ†HÒ'»Ÿ+
oÏN¬Ã9 dÙãÜדÏâÍ~æc+j·Jzâ7(£ðW]•æ™?nê´º6åwéåç÷N•ZŠíž›¬|?Ðõ?Ñ-E…®³ÇV$~X¯/…õ x‘LˆÑÜÚÈ7¦pzãÜüë½ðÄ^õtÝYËÍ7ÉÖÕ8ÏUe# #€r=sU¾/é’E§jRC4mxNÝ´9†íuá»›V‘
ZI€×cr1Ÿpzsøf»¨åV‹ìû`qËLÊIã?\~¼³áËC©êhªOîO»‘ÃmçÛçút×¢x“Z}?Üê#b-¤X7õÄò gž zzbº3œm*qvs·M=íúéw}¿&Úª°^Ö×µÏ(ø‡â†Öµƒenñý†×åQáYûœ÷ÇLœôÎNk¡ð‡¼/µ¸n0æÉ0¬ƒ‚üîÉÆvŒw®Sáö”š¯‹-üÕVŠØÙ[$`(9cqƒÔ_@BëqûÙ`Ýæ0;79È?w<ó |ÙÜkßÌ1±Ëã¿ìÒ»ðlìï«ÓnªèèrP´NÏš&ŽéöÙ¸÷æ°~-_O'‰`°!RÚÚÝ%]Ø%þbß1'¿ÿ XÕáOöÎŒ·‹¬+Åæ*ÛÛ™0¤ƒOÍÔ`u¯¦ÂaèÐÃÓ«‹¨Ô¥µœ¿¯ÉyÅÙ.oÔôŸ Úx&(STðݽ¦õ] ’ÒNóÁäÈùr3í·žÚ[™ƒ¼veÈ÷ÞIõÎGlqÎ=M|«gsªxÅI6
]Z·Îªä,¨zŒŽÄ~#ØŠúFñiÉqc©éÐD>S딑 GñŽ1éÐ^+
Ëi;Ô„µVÕú»i¯ÈÒ-ZÍ]òܘ®ì`bÛÙ¥_/y(@÷qÐúg Ô÷W0.Ø›
6Ò© r>QƒŒ0+Èîzb¨É+I0TbNñ"$~)ÕÒ6Þ‹{0VÆ27œWWñcÄcX×íôûyKZéðªc'iQ¿¯LaWŠŸS\·Š“źʸ…ôÙÂí|öÀÇåV|!¤ÂGâÛ[[’ï
3OrÙËPY¹=Î1õ5öåTžÑè Ú64/üö?Zëžk}¬¶éàoá¾á}3“ü]8Éæ¿´n²Žš_6¾pœ)2?úWÓÚ¥¾¨iWúdŽq{*ª1rXŒd…m»‰äcô¯–dâ•ã‘Jº¬§¨#¨®§,df«8ÉÅßN¾hˆ;îÓ=7áùpën®É 6ûJžO2^œÐò JÖø¥²ã›Ò6Ü·‰!wbÍ‚¬O©»õ¬ÿ ƒP=Ä:â¤-&ÙŽ
`È9 r9íϧzë> XÅ7ƒ5X–krÑ¢L7€ìw}ÑŸNHëŒüþ:2†á¼+u·á÷N/Û'Ðç~ߘô«ëh!ónRéeQ´6QÛÿ èEwëÅÒ|¸Yqó1uêyùzð8 ƒŠù¦Ò;¹ä6öi<'ü³„[ÃZhu½ ùÍ¡g‚>r¯×ŠîÌx}bñ2“k꣧oø~›hTèóËWò4|ki"xßQ˜Ï6øÀLnß‚0 ¹Æ{±–¶Öe#¨27È@^Ìß.1N¾œyç€õ†ñeé·Õã†çQ°€=Ì©ºB€Ø8<‚ÃSõ®ùcc>×Ú .Fr:žÝGæ=kÁâ,^!Fž
¬,àµ}%¶«îõ¹†"r²ƒGœüYÕd?aÑÃY®49PyU ÷þ!žxÅm|/‚ãNð˜¼PcûTÒ,¹/Ý=FkÏ|u¨¶«âë…{¤m¢]Û¾ïP>®XãÞ½iÓÁ¾
‰'¬–6ß¼(„ï— í!úÙäzôë^–:œ¨å|,_¿&š×]uÓѵÛô4’j”bž§x‘Æ©ã›á,‚[Ô
ÎÞ= ŒËæ ÀùYÁ?ŽïÚ¼?ÁªxºÕÛ,°1¸‘¿ÝäãØ¯v…@¤åq½ºã œàûââ·z8Xýˆþz~—û»™âµj=Ž
â~ãáh@'h¼F#·Üp?ŸëQü-løvépx»cŸø…lxâÃûG·‰¶ø”L£©%y?¦úõÆü-Õ¶¥y`Òl7>q’2üA?•F}c‡jB:¸Jÿ +§¹¿¸Q÷°ív=VÑìu[Qml%R7a×IèTõéŽx¬
?†š7
1†îã-ˆã’L¡lŽ0OÓ=ÅuˆpÇ•¼3ÛùÒ¶W/!|’wŽw^qÔ×ÏaóM8Q¨ãÑ?ëï0IEhÄa¸X•`a
?!ÐñùQ!Rä žqŽžÝO`I0ÿ J“y|ñ!Îã@99>þ8–+éáu…!ù—ä
ʰ<÷6’I®z
ÅS„¾)Zþ_Öýµ×ËPåOwø÷þ*üïænÖùmØÝûþ¹=>¦½öî×Jh]¼ç&@§nTŒ6ITÀõ^Fxð7Å3!Ö·aÛ$þÿ ¹ã5îIo:ȪmËY[’8ÇӾlj*òû¢¥xõ¾¼ú•åk+\ð¯ HÚoŽl•Ûk,¯ ç²²cõÅ{²Z\
´ìQ åpzŽ3Ôð}ÿ Jð¯XO¡øÎé€hÙ¥ûLdŒ`““ù6Gá^ÃáÝ^Ë[Ñb¾YåŒÊ»dŽ4†2§,;ÿ CQÄ´¾°¨c–±”mºV{«ßÕýÄW\ÖŸ‘çŸ,çMRÆí“l-ƒn~ë©ÉÈê Ü?#Ž•¹ðãSÒ¥ÐWNíà½;ãž)™ÎSÈ9cóLj뵿ūiÍk¨ió¶X‚7÷ƒ€yãnyÏŽëÞ Öt`×À×V's$È9Ú:ä{wÆEk€«†Çàc—â$éÎ.éí~Ýëk}ÅAÆpörÑ¢‡Šl¡ÑüSs‹¨‰IÄóÀ×wñ&eºðf™pŒÆ9gŽTø£lñëÀçŽ NkÊUK0U’p ï^¡ãÈ¥´ø{£ÙHp`’ØåbqÏ©äó^Æ:
Ž' ÊóM«õz+ß×ó5Ÿ»('¹ð¦C„$˜Å¢_ºÈI?»^äã'ñêzž+ë€ñ-½»´}¡Ë*õ?.xÇ^1ŽMyǸ&“—L–îëöâ7…' bqéÎGé]˪â1$o²¸R8Ã`.q€}sÖ¾C98cêÆÞíïóòvÓòùœÕfÔÚéýuèÖ·Ú
Å‚_¤³ÜۺƑß”àרý:׃xPþÅÕî-/üØmnQìïGΊÙRqê=>¢½õnæ·r!—h`+’;ò3È<“Û©éšóŸx*÷V¹¸×tÈiˆßwiÔÿ |cŒñÏ®3ֽ̰‰Ë Qr©ö½®¼ÛoÑÙZÅÑ«O൯ýw8;k›ÿ x†;ˆJa;‘º9÷÷R+¡ñgŽí|Iáë{ôáo2ʲ9 029ÉÏLí\‰¿¸Ÿb˜ "Bv$£ßiê>=ªª©f
’N ëí>¡NXW~5×úíø\‰»½Ï^ø(—wÖú¥¤2íŽÞXæÁ$°eÈ888^nÝë²ñÝÔ^ ÖÚ9Q~Ëå7ï
DC¶ÑµƒsËÇè9®Wáþƒ6‡£´·°2\Ý:ÈÑ?(#¨'$õèGJ¥ñW\ÿ ‰E¶—¸™g˜ÌÀ¹;Pv ú±ÎNs·ëŸ’–"Ž/:té+ûË]öJöÓM»ëø˜*‘•^Uý—êd|‰åñMæÔÝ‹23å™6æHùÛ‚ëüñ^…ñ1¢oêûÑEØ.õ7*ÅHtÎp{g<·Á«+¸c¿¿pÓ¾Æby=8É_ÄsÆk¬ñB\jÞÔì••Ë[9Píb‹Bヅ =93§ð§LšÛáÖšÆæXÌÞdÛP.0\ãïÛ0?™úJ¸™Ë
”•œº+=<µI£¦í¯õêt¬d‹T¬P=ËFêT>ÍØØ@Ï9<÷AQÌ×»Õ¡xùk",JÎæù±Éç$œŽŸZWH®¯"·UÌQ ’ÙÈ]ÅXg<ã
ߨg3-Üqe€0¢¨*Œ$܃
’Sû 8㎼_/e'+Ï–-èÓ¶¶Õíß[·ÙÙ½îì—¼sk%§µxä‰â-pÒeÆCrú
ôσžû=”šÅô(QW‚Õd\ƒæ. \àö¹¯F½°³½0M>‘gr÷q+œ¶NïºHO— ¤ ܥݔn·J|ÆP6Kµc=Isó}Ò çGš)a=—#vK›åoK§ßóÙ¤¶¿õú…ÄRÚ[ËsöÙ¼Ë•Ë ópw®qœŒ·Ø
ùÇâ‹ý‡ãKèS&ÞvûDAù‘É9ŒîqÅ}
$SnIV[]Ñ´Ó}ØÜ¾A Ü|½kÅþÓ|EMuR¼.I¼¶däò‚ÃkÆ}ðy¹vciUœZ…Õõ»z¾÷¿n¦*j-É/àœHã\y5 Û ß™ó0—äŸnzôã#Ô¯,†¥ÚeÔ÷ÜÅ´„“'c…<íÝ€<·SŠ¥k§Ã¢éÆÆÙna‚8–=«Êª[Ÿ™°pNî02z“ÔÙ–K8.È’Þî(vƒ2®@ äÈûãçžxäÇf¯ˆu¹yUÕîýWšÙ|›ëÒ%Q^í[æ|éo5ZY•^{96ˆY‚§v*x>âº_|U¹Ö´©tûMÒÂ9PÇ#«£#€ éÉñ‘ƒÍz/‰´-į¹°dd,Б›p03ƒœ{ç9=+
Ûᧇ¬¦[‡‚ê婺¸#±ß=³ý¿•Õµjñ½HÙh›Û[§ÚýÊöô÷{˜?ô÷·Ô.u©–_%còcAÀ˜’
}0x9Î>žñÇáÍ9,ahï¦Ì2òÓ ñÛAäry$V²Nð
]=$Ž
‚#Ù‚1ƒƒødõMax‡ÂÖ^!±KkÛ‘
«“Çó²FN8+ëÎ{Ò¼oí§[«ÕMRoËeç×[_m/¦¦k.kôgŽxsSÓ´ý`êzªÜÜKo‰cPC9ÎY‰#§^üý9¹âïÞx£Ë·Ú`±‰‹¤;³–=ÏaôÕAð‚÷kêÁNBéÎælcõö®£Fð†ô2Ò¬]ßÂK$ÓÜ®•”/ÊHàã$ä¸÷ëf¹Oµúâ“”’²øè´µþöjçNü÷üÌ¿ xNïFÒd»¼·h®îT9ŽAµÖ>qÁçÔœtïÒ»\ȶÎîcÞäîó3¶@#ÉIÎ ÔñW.<´’¥–ÑÑ€ÕšA‚ ;†qÓë‚2q
ÒÂó$# Çí‡
!Ë}Õ9ÈÎÑÉã=;ŒÇÎuñ+ÉûÏ¥öíeÙ+$úíÜ娯'+êZH4ƒq¶FV‹gïŒ208ÆÌ)íб>M|÷âÍã¾"iì‹¥£Jd´™OÝç;sÈúr+ÜäˆË)DŒ¥šF°*3Õ”d{zÔwºQ¿·UžÉf†~>I+ŒqÔ`ð3œ“Ü×f]œTÁÔn4“ƒø’Ýßõ_«*5šzGCÊ,þ+ê1ò÷O¶¸cœºb2yÇ;cùÕ£ñh¬›áÑŠr¤ÝäNBk¥—á—†gxšX/쑘hŸ*Tçn =ûã¦2|(ð¿e·ºÖ$
ýìŸ!'åΰyîî+×öœ=Y:²¦ÓÞ×iü’—ü
-BK™£˜›âÆ¡&véðõ-ûÉY¹=Onj¹ø¯¯yf4·±T Pó`çœ7={×mÃ/¢˜ZÚòK…G½¥b„’G AãÜœ*í¯Ã¿ IoæI¦NU8‘RwÈã;·€ Û×ëÒ”1Y
•£E»ÿ Oyto¢<£Áö·šï,䉧ûA¼sû»Nò}¹üE{ÜÖªò1’õÞr0â}ÎØ#>à/8ïéÎ~—áÍ#ñÎlí§³2f'h”?C÷YËdð:qëõÓ·‚ïeÄ©
ÔÈØÜRL+žAÎ3¼g=åšó³Œt3
ÑQ¦ùRÙßE®¼±w_;þhš’Sirÿ ^ˆã¼iੇ|RòO„m°J/“$·l“ ÇÓ¿ÿ [ÑŠÆ“„†Õø>cFÆ6Ø1ƒ– àz7Ldòxäüwá‹ÝAXùO•Úý’é®ähm •NÀ±ÌTÈç
ƒ‘I$pGž:‚ÄbêW¢®œ´|¦nÍ>¶ÖÏ¢§ÎÜ¢ºö¹•%ÄqL^öÛKpNA<ã¡ …î==ª¸óffËF‡yÌcÉ ©ç$ð=ñÏYþÊ’Ú]—¥‚¬‚eDïÎH>Ÿ_ÌTP™a‰ch['çÆÜò7a‡?w°Ïn§âÎ5”’¨¹uÚÛ|´ÓÓc§{O—ü1•ªxsÃZ…ÊÏy¡Ã3¸Ë2Èé» ‘ƒÎ äžÜðA§cáOéúÛ4ý5-fŒï„ù¬ûô.Ç Üsž•Ò¾•wo<¶Ÿ"¬¡º|£
î2sÇ¡éE²ÉFѱrU°dÜ6œ¨ mc†Îxë׺Þ'0²¡Rr„{j¾í·è›µ÷)º·å–‹î2|I®Y¼ºÍË·–ÃÆàã£'óÆxƒOÆÞ&>\lóÌxP Xc¸ì Sþ5§qà/ê>#žÞW¸if$\3 ® ûÄ“ùŽÕê¾ð<Ó‹H¶óÏ" å·( á‘€:ã†8Ï=+ꨬUA×ÃËÚT’ÑÞöù¥¢]{»ms¥F0\ÑÕ—ô}&ÛB´ƒOŽÚ+›xíÄÀ1
,v± žIëíZ0ǧ™3í2®0ทp9öÝÔž)ÓZËoq/Ú“‘L ²ŒmùŽï‘Ó9§[Û#Ä‘\ÞB¬Çs [;à à«g‚2ôòªœÝV§»·¯/[uó½õÛï¾
/šÍ}öüÿ «=x»HŸÂÞ.™ ÌQùŸh´‘#a$‚'¡u<Š›Æ>2>+ƒLSiöwµFó1!eg`£åœ ÷ëÛö}Á¿ÛVÙêv $¬ƒ|,s÷z€ð΃¨x÷ÅD\ÜŒÞmåÔ„ ˆ o| :{ÇÓ¶–òÁn!´0Ål€, ƒ ( ÛŒŒc¶rsšæ,4‹MÛOH!@¢ ÇŽ„`å²9ÝÃw;AÍt0®¤¡…¯ØÄ.Àìí´ƒ‘ßñ5Í,Óëu-ÈÔc¢KÃÓ£òÖ̺U.õL¯0…%2È—"~x
‚[`có±nHàŽyàö™¥keˆìŒÛFç{(Ø©†`Jã#Žwg<“:ÚÉ;M
^\yhûX‡vB·÷zrF?§BÊÔ/s<ÐÈB)Û± ·ÍÔwç5Âã:så§e{mѤï«Òíh—]Wm4âí¿ùþW4bC3¶ª¾Ùr$pw`àädzt!yŠI„hÂîàM)!edŒm'æ>Ç?wzºKìcŒ´¯Ìq6fp$)ãw¡éUl`µ»ARAˆÝÕgr:äŒgƒéé[Ôö±”iYs5Ýï«ÙG—K=þF’æMG«óÿ `ŠKɦuOQ!ÕåŒ/ÎGÞ`@ËqÕzdõâ«Ê/Ö(ƒK´%ŽbMüåÜŸö—>¤óŒŒV‘°„I¢Yž#™¥ùÏÊ@8
œgqöö5ª4vד[¬(q cò¨À!FGaÁõõ¯?§†¥ÏU½í¿WªZ$úyú½Žz×§Éþ?>Ã×È•6°{™™ŽÙ.$`ÎUœ…çè ' ¤r$1Ø(y7 ðV<ž:È ÁÎMw¾Â'Øb§øxb7gãО½óÉÊë²,i„Fȹ£§8ãä½k¹¥¦ê/ç{ïê驪2œ/«ü?¯Ô›ìñÜ$þeýœRIåŒg9Ác’zrrNO bÚi¢
ѺË/$,“ª¯Ýä;Œ× ´<ÛÑn³IvŸb™¥ nm–ÄŸ—nÝÀãŽ3ëÍG,.öó³˜Ù£¹uÊÌrŠ[<±!@Æ:c9ÅZh
ì’M5ÄìÌ-‚¼ëÉùqŽGì9¬á ;¨A-ž—évþÖ–^ON·Ô”ŸEý}ú×PO&e[]ÒG¸˜Ûp ƒÃà/Ë·8ûÀ€1ž@¿ÚB*²¼ñì8@p™8Q“žÆH'8«I-%¸‚
F»“åó6°Uù|¶Ú¸ã ò^Äw¥ŠÖK–1ÜÝK,Žddlí²0PÀü“×ükG…¯U«·¶–´w¶ŽÍ¾©yÞú[Zös•¯Á[™6°
¨¼ÉVæq·,#
ìãï‘×8îry®A››¨,ãc66»Ë´ã'æÉù?t}¢æH--Òá"›|ˆ¬[í 7¶ö#¸9«––‹$,+Ëqœ\Êøc€yê^ݸÄa°«™B-9%«×®‹V´w~vÜTéꢷþ¼ˆ%·¹• ’[xç•÷2gØS?6åÀÚ õ9É#š@÷bT¸º²C*3Bá¤òÎA9 =úU§Ó"2Ãlá0iÝIc‚2Î@%öç94ùô»'»HÄ¥Ô¾@à Tp£šíx:úÊ:5eºßMý×wµ›Ó_+šº3Ýyvÿ "ºÇ<ÂI>Õ1G·Ë«È«É# àÈÇ øp Jv·šæDûE¿›†Ë’NFr2qŸ½ÇAÜšu•´éí#Ħ8£2”Ú2Ã/€[ÎTr;qŠz*ý’Îþ(≠;¡TÆâ›;ºÿ àçœk‘Þ8¾Uª¾íé{^×IZéwÓkXÉûÑZo¯_øo×È¡¬ â–ÞR§2„‚Àœü½ùç® SVa†Âüª¼±D‘ŒísŸàä|ä2 æ[‹z”¯s{wn„ÆmáóCO+†GO8Ïeçåº`¯^¼ðG5f{Xžä,k‰<á y™¥voÆ éÛõëI=œ1‹éíÔÀÑ)R#;AÂncäŽ:tÏ#¶TkB.0Œ-ÖÞZÛgumß}fÎJÉ+#2êÔP£žùÈÅi¢%œ3P*Yƒò‚A쓎2r:ƒÐúñiRUQq‰H9!”={~¼“JŽV¥»×²m.ÛߺiYl¾òk˜gL³·rT•
’…wHÁ6ä`–Î3ùÌ4Øe³†&òL‘•%clyîAÂäà0 žüç$[3uŘpNOÀÉ=† cï{rYK
ååä~FÁ
•a»"Lär1Ó¯2Äõæ<™C•.fÕ»è¥~½-¿g½Â4¡{[ør¨¶·Žõäx¥’l®qpwÇ»8ärF \cޏܯÓ-g‚yciÏÀ¾rÎwèØÈ#o°Á9ã5¢šfÔxÞæfGusÏÌJÿ µ×œ/LtãÅT7²¶w,l
ɳ;”eúà·¨çîŒsÜgTÃS¦^ '~‹®›¯+k÷ZÖd©Æ*Ó[Ü«%Œk0ŽXƒ”$k#Ȩ P2bv‘ƒŸáÇ™ÆÕb)m$É*8óLE‘8'–ÜN Úyàúô+{uº±I'wvš4fÜr íì½=úuú
sFlìV$‘ö†HÑù€$§ õ=½¸«Ž]
:Ž+•¦ïmRþ½l´îÊT#nkiøÿ _ðÆT¶7Ò½ºÒ£Î¸d\ã8=yãŽÜäR{x]ZâÚé#¸r²#»ÎHÆ6õ ç® ÎFkr;sºÄ.&;só±Ç9êH÷ýSšÕtÐU¢-n Ì| vqœ„{gŒt§S.P‹’މ_[;m¥ÞZýRûÂX{+¥úü¼ú•-àÓ7!„G"“´‹žƒnrYXã¸îp éœ!ÓoPÌtÑ (‰Þ¹é€sÓ#GLçÕšÑnJý¡!‘Tä#“ß?îýp}xÇ‚I¥Õn#·¸–y'qó@r[ Êô÷<ÔWÃÓ¢áN¥4Ô’I&ݼ¬¬¼ÞºvéÆ
FQV~_ÒüJÖÚt¥¦Xá3BÄP^%ÈÎW-×c¡ú©¤·Iþèk¥š?–UQåIR[’O 5x\ÉhÆI¶K4«2ùªŠŒ<¼óœçØ`u«‚Í.VHä€ Ëgfx''9ÆI#±®Z8
sISºku¢ßÞ]úk»Jößl¡B.Ü»ÿ MWe
°·Ž%šêɆ¼»Âù³´œ O¿cÐÓÄh©"ÛÜÏ.ÖV’3nüÄmnq[ŒòznšÖ>J¬òˆæ…qýØP Ž:ä7^0yëWšÍ_79äoaÈ °#q0{ää×mœy”R{vÒÞ¶ÚÏe¥“ÚÆÐ¥Ì®—õýjR •íç›Ìb„+JyÜØÙ•Ç]¿Ôd þËOL²”9-Œ—õÃc'æÝלçÚ²ìejP“½
âù°¨†ðqòädЃÉäÖÜj÷PÇp“ÍšŠå«‘î
<iWNsmª»¶vÓz5»ûì:Rs\Ðßôû×uÔÿÙ